Browsing by Author "Gökyar, S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Flexible strain sensors based on electrostatically actuated graphene flakes(Institute of Physics Publishing, 2015) Fardindoost, S.; Alipour, A.; Mohammadi, S.; Gökyar, S.; Sarvari, R.; Iraji Zad, A.; Demir, Hilmi VolkanIn this paper we present flexible strain sensors made of graphene flakes fabricated, characterized, and analyzed for the electrical actuation and readout of their mechanical vibratory response in strain-sensing applications. For a typical suspended graphene membrane fabricated with an approximate length of 10 μm, a mechanical resonance frequency around 136 MHz with a quality factor (Q) of ∼60 in air under ambient conditions was observed. The applied strain can shift the resonance frequency substantially, which is found to be related to the alteration of physical dimension and the built-in strain in the graphene flake. Strain sensing was performed using both planar and nonplanar surfaces (bending with different radii of curvature) as well as by stretching with different elongations. © 2015 IOP Publishing Ltd.Item Open Access An inductively coupled ultra-thin, flexible, and passive RF resonator for MRI marking and guiding purposes: Clinical feasibility(John Wiley & Sons, 2018) Alipour, A.; Gökyar, S.; Algın, O.; Atalar, Ergin; Demir, Hilmi VolkanPurpose: The purpose of this study is to develop a wireless, flexible, ultra-thin, and passive radiofrequency-based MRI resonant fiducial marker, and to validate its feasibility in a phantom model and several body regions. Methods: Standard microfabrication processing was used to fabricate the resonant marker. The proposed marker consists of two metal traces in the shape of a square with an edge length of 8 mm, with upper and lower traces connected to each other by a metalized via. A 3T MRI fiducial marking procedure was tested in phantom and ex vivo, and then the marker's performance was evaluated in an MRI experiment using humans. The radiofrequency safety was also tested using temperature sensors in the proximity of the resonator. Results: A flexible resonator with a thickness of 115 μm and a dimension of 8 × 8 mm was obtained. The experimental results in the phantom show that at low background flip angles (6-18°), the resonant marker enables precise and rapid visibility, with high marker-to-background contrast and signal-to-noise ratio improvement of greater than 10 in the vicinity of the marker. Temperature analysis showed a specific absorption ratio gain of 1.3. Clinical studies further showed a successful biopsy procedure using the fiducial marking functionality of our device. Conclusions: The ultra-thin and flexible structure of this wireless flexible radiofrequency resonant marker offers effective and safe MR visualization with high feasibility for anatomic marking and guiding at various regions of the body. Magn Reson Med 80:361-370, 2018.