Browsing by Author "Esmer, G. Bora"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Bessel functions-based reconstruction of non-uniformly sampled diffraction fields(IEEE, 2007) Uzunov, V.; Esmer, G. Bora; Gotchev, A.; Onural, Levent; Özaktaş, Haldun M.A discrete computational model for the diffraction process is essential in forward problems related to holographic TV. The model must be as general as possible, since the shape of the displayed objects does not bear any restrictions. We derive a discrete diffraction model which suits the problem of reconstruction of diffraction fields from a set of non-uniformly distributed samples. The only restriction of the model is the wave nature of the field. The derivation takes advantage of changing the spatial and frequency coordinates to polar form and ends up with a model stated in terms of Bessel functions. The model proves to be a separable orthogonal basis. It shows rapid convergence when evaluated in the framework of the non-uniform sampling problem.Item Open Access Holographic 3DTV displays using spatial light modulators(Springer, 2008) Onural, Levent; Kovachev, Metodi; Ilieva, Rossitza; Esmer, G. Bora; Reyhan, Tarık; Benzie, P.; Watson, J.; Özaktaş, Haldun M.; Onural, LeventItem Open Access Performance assessment of a diffraction field computation method based on source model(IEEE, 2008-05) Esmer, G. Bora; Onural, Levent; Özaktaş, Haldun M.; Uzunov, V.; Gotchev, A.Efficient computation of scalar optical diffraction field due to an object is an essential issue in holographic 3D television systems. The first step in the computation process is to construct an object. As a solution for this step, we assume that an object can be represented by a set of distributed data points over a space. The second step is to determine which algorithm provides better performance. The source model whose performance is investigated is based on superposition of the diffraction fields emanated from the hypothetical light sources located at the given sample points. Its performance is evaluated according to visual quality of the reconstructed field and its algorithmic complexity. Source model provides acceptable reconstructed patterns when the region in which the samples are given has a narrow depth along the longitudinal direction and a wide extent along the transversal directions. Also, the source model gives good results when the cumulative field at the location of each point due to all other sources tends to be independent of that location. ©2008 IEEE.Item Open Access Reconstruction of scalar diffraction field from distributed data points over 3D space(IEEE, 2007) Esmer, G. Bora; Uzunov, V.; Onural, Levent; Gotchev, A.; Özaktaş, Haldun M.Diffraction field computation is an important task in the signal conversion stage of the holographic 3DTV. We consider an abstract setting, where the diffraction field of the desired 3D scene to be displayed is given by discrete samples distributed over 3D space. Based on these samples, a model of the diffraction field should be built to allow the field computation at any desired point. In our previous works, we have proved our concepts for the simplistic 2D case. In this paper, we generalize the earlier proposed techniques, namely the projection onto convex sets and conjugate gradient based techniques and test them for their computational efficiency and memory requirements for a specific 3D case.