Browsing by Author "Erdogan, M."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access 4,5-dianilinophtalimide protects neuroendocrine cells against serum deprivation-induced stress and apoptosis(2013) Ergin V.; Erdogan, M.; Karasu Ç.; Menevşe, A.OBJECTIVE: The aim of this study was to reveal the effects of 4,5-dianilinophthalimide (DAPH), which inhibits amyloid β fibrillization, against serum deprivation (SD)-induced apoptosis and the possible mechanisms in differentiated PC12 neuron cells. METHODS: Firstly, we evaluated whether DAPH protects cell viability exposed to SD by MTT assay. Next, we examined the changes of phospho-p38 MAPK (Thr180/Tyr182), phospho-HSP27 (Ser82), phospho-c-JUN (Ser73) and cleaved-CASP3 (Asp175) profiles by immunoblotting, in PC12 cells exposed to SD. Intracellular reactive oxygen species (ROS) level was also measured. RESULTS: SD induced apoptosis accompanied by up-regulation of phospho-p38 MAPK (Thr180/Tyr182), phospho-HSP27 (Ser82), phospho-c-JUN (Ser73), cleaved-CASP3 (Asp175) and intracellular ROS content. Co-treatment with nontoxic doses of DAPH prevented apoptosis by the attenuation of activated proteins and reduction of ROS level. These results suggest that serum deprivation-induced apoptosis inhibited by DAPH administration. CONCLUSION: We have provided for the first evidence that DAPH has a neuroprotective effect on SD-caused stress, probably via contributing the reestablishment of redox homeostasis. © 2013 Neuroendocrinology Letters.Item Open Access Multi-photon ablation of biological samples with custombuilt femtosecond fiber laser-microscope system(Optical Society of America, 2010) Yavaş, Seydi; Erdogan, M.; Gürel, Kutan; Tazebay, Uygar Halis; İlday, F. ÖmerA femtosecond laser-microscope system is custom-built for ablation of cells and tissue at 1030 nm. Fiber lasers offer important advantages for nanosurgery, including superior robustness, lower-cost and nearly complete control over pulse train pattern. © 2010 Optical Society of America.Item Open Access Regulation of shootin1 gene expression involves NGF-induced alternative splicing during neuronal differentiation of PC12 cells(Nature Publishing Group, 2015) Ergin, V.; Erdogan, M.; Menevse, A.Shootin1 is a protein involved in neuronal polarization, and has been shown to be a key molecule for the positive/negative feedback loop for axon induction required during neuronal symmetry breaking. To better understand the molecular basis of shootin1 dynamics, we analysed the regulatory pathways and the expressional status of shootin1 gene during NGF-induced neuronal differentiation. We demonstrated that the isoform-1 and isoform-2 of shootin1 is differentially expressed during neuronal differentiation. By blocking individual downstream pathways of NGF signalling, we found that PI3K/Akt pathway plays a major role in the expression of shootin1 isoform-2. Western blot and RT-PCR results showed that the isoform-1 of shootin1 is constitutively expressed, while the isoform-2 is expressed in a manner that is strictly dependent on NGF-stimulation. Isoform-specific RT-PCR results demonstrated that the differential expression of the isoform-1 and isoform-2 of shootin1 is a consequence of alternative splicing of shootin1 pre-mRNA, in response to NGF-signalling. Collectively these findings provide the first information on the molecular mechanisms regulating the expression of shootin1 gene and represent the first example of NGF-induced alternative splicing process that has a regulatory role in neuritogenesis.