Browsing by Author "Del Galdo, G."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access An empirical eigenvalue-threshold test for sparsity level estimation from compressed measurements(IEEE, 2014) Lavrenko, A.; Römer, F.; Del Galdo, G.; Thoma, R.; Arıkan, OrhanCompressed sensing allows for a significant reduction of the number of measurements when the signal of interest is of a sparse nature. Most computationally efficient algorithms for signal recovery rely on some knowledge of the sparsity level, i.e., the number of non-zero elements. However, the sparsity level is often not known a priori and can even vary with time. In this contribution we show that it is possible to estimate the sparsity level directly in the compressed domain, provided that multiple independent observations are available. In fact, one can use classical model order selection algorithms for this purpose. Nevertheless, due to the influence of the measurement process they may not perform satisfactorily in the compressed sensing setup. To overcome this drawback, we propose an approach which exploits the empirical distributions of the noise eigenvalues. We demonstrate its superior performance compared to state-of-the-art model order estimation algorithms numerically.Item Open Access Sparsity order estimation for single snapshot compressed sensing(IEEE, 2015-11) Romer, F.; Lavrenko, A.; Del Galdo, G.; Hotz, T.; Arıkan, Orhan; Thoma, R. S.In this paper we discuss the estimation of the spar-sity order for a Compressed Sensing scenario where only a single snapshot is available. We demonstrate that a specific design of the sensing matrix based on Khatri-Rao products enables us to transform this problem into the estimation of a matrix rank in the presence of additive noise. Thereby, we can apply existing model order selection algorithms to determine the sparsity order. The matrix is a rearranged version of the observation vector which can be constructed by concatenating a series of non-overlapping or overlapping blocks of the original observation vector. In both cases, a Khatri-Rao structured measurement matrix is required with the main difference that in the latter case, one of the factors must be a Vandermonde matrix. We discuss the choice of the parameters and show that an increasing amount of block overlap improves the sparsity order estimation but it increases the coherence of the sensing matrix. We also explain briefly that the proposed measurement matrix design introduces certain multilinear structures into the observations which enables us to apply tensor-based signal processing, e.g., for enhanced denoising or improved sparsity order estimation. © 2014 IEEE.