An empirical eigenvalue-threshold test for sparsity level estimation from compressed measurements

Date

2014

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Proceedings of the 22nd European Signal Processing Conference, EUSIPCO 2014

Print ISSN

2219-5491

Electronic ISSN

Publisher

IEEE

Volume

Issue

Pages

1761 - 1765

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
11
downloads

Series

Abstract

Compressed sensing allows for a significant reduction of the number of measurements when the signal of interest is of a sparse nature. Most computationally efficient algorithms for signal recovery rely on some knowledge of the sparsity level, i.e., the number of non-zero elements. However, the sparsity level is often not known a priori and can even vary with time. In this contribution we show that it is possible to estimate the sparsity level directly in the compressed domain, provided that multiple independent observations are available. In fact, one can use classical model order selection algorithms for this purpose. Nevertheless, due to the influence of the measurement process they may not perform satisfactorily in the compressed sensing setup. To overcome this drawback, we propose an approach which exploits the empirical distributions of the noise eigenvalues. We demonstrate its superior performance compared to state-of-the-art model order estimation algorithms numerically.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)