Browsing by Author "Chen, S."
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Chlamydia pneumoniae hijacks a host autoregulatory IL-1β loop to drive foam cell formation and accelerate atherosclerosis(Cell Press, 2018) Tumurkhuu, G.; Dagvadorj, J.; Porritt, R. A.; Crother, T. R.; Shimada, K.; Tarling, E. J.; Erbay, E.; Arditi, M.; Chen, S.Pathogen burden accelerates atherosclerosis, but the mechanisms remain unresolved. Activation of the NLRP3 inflammasome is linked to atherogenesis. Here we investigated whether Chlamydia pneumoniae (C.pn) infection engages NLRP3 in promoting atherosclerosis. C.pn potentiated hyperlipidemia-induced inflammasome activity in cultured macrophages and in foam cells in atherosclerotic lesions of Ldlr−/− mice. C.pn-induced acceleration of atherosclerosis was significantly dependent on NLRP3 and caspase-1. We discovered that C.pn-induced extracellular IL-1β triggers a negative feedback loop to inhibit GPR109a and ABCA1 expression and cholesterol efflux, leading to accumulation of intracellular cholesterol and foam cell formation. Gpr109a and Abca1 were both upregulated in plaque lesions in Nlrp3−/− mice in both hyperlipidemic and C.pn infection models. Mature IL-1β and cholesterol may compete for access to the ABCA1 transporter to be exported from macrophages. C.pn exploits this metabolic-immune crosstalk, which can be modulated by NLRP3 inhibitors to alleviate atherosclerosis. Infections can accelerate atherosclerosis, but the mechanisms remain unresolved. Tumurkhuu et al. show that C.pn infection-induced IL-1β institutes negative feedback to inhibit Gpr109a, ABCA1 expression, and cholesterol efflux, leading to accumulation of intracellular cholesterol. Mature IL-1β can use ABCA1 for secretion from macrophages to the detriment of cholesterol efflux.Item Open Access The expression of adenosine A2B receptor on antigen-presenting Cells suppresses CD8+ T-cell responses and promotes tumor growth(NLM (Medline), 2020-05) Chen, S.; Akdemir, İmran; Fan, J.; Linden, J.; Zhang, B.; Çekiç, ÇağlarAccumulating evidence suggests that inhibiting adenosine-generating ecto-enzymes (CD39 and CD73) and/or adenosine A2A or A2B receptors (R) stimulates antitumor immunity and limits tumor progression. Although activating A2ARs or A2BRs causes similar immunosuppressive and protumoral functions, few studies have investigated the distinct role of A2BR in cancer. Here, we showed that A2BR expression by hematopoietic cells was primarily responsible for promoting tumor growth. Deletion of A2BR profoundly enhanced anticancer T-cell immunity. Although T-cell A2BR plays an insignificant role for A2BR-mediated immunosuppression and tumor promotion, A2BR deficiency in tumor-bearing mice caused increased infiltration of myeloid and CD103+ dendritic cells, which was associated with more effective cross-priming of adoptively transferred tumor antigen–specific CD8+ T cells. A2BR deletion also intrinsically favored accumulation of myeloid and CD11bdim antigen-presenting cells (APC) in the tumor microenvironment. Both myeloid-specific or CD11c-specific conditional deletion of A2BR delayed primary tumor growth. Myeloid, but not CD11c-specific conditional, depletion delayed lung metastasis. Pharmacologic blockade of A2BR improved the antitumor effect of adoptive T-cell therapy. Overall, these results suggested that A2BR expression on myeloid cells and APCs indirectly suppressed CD8+ T-cell responses and promoted metastasis. These data provide a strong rationale to combine A2BR inhibition with T-cell–based immunotherapy for the treatment of tumor growth and metastasis.Item Open Access High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices(Nature Publishing Group, 2016) Perumal, A.; Shendre, S.; Li, M.; Tay, Y. K. E.; Sharma, V. K.; Chen, S.; Wei, Z.; Liu, Q.; Gao, Y.; Buenconsejo, P. J. S.; Tan S.T.; Gan, C. L.; Xiong, Q.; Sum, T. C.; Demir, Hilmi VolkanFormamidinium lead halide (FAPbX3) has attracted greater attention and is more prominent recently in photovoltaic devices due to its broad absorption and higher thermal stability in comparison to more popular methylammonium lead halide MAPbX3. Herein, a simple and highly reproducible room temperature synthesis of device grade high quality formamidinium lead bromide CH(NH2)2 PbBr3 (FAPbBr3) colloidal nanocrystals (NC) having high photoluminescence quantum efficiency (PLQE) of 55-65% is reported. In addition, we demonstrate high brightness perovskite light emitting device (Pe-LED) with these FAPbBr3 perovskite NC thin film using 2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) commonly known as TPBi and 4,6-Bis(3,5-di(pyridin-3-yl)phenyl)-2-methylpyrimidine (B3PYMPM) as electron transport layers (ETL). The Pe-LED device with B3PYMPM as ETL has bright electroluminescence of up to 2714 cd/m2, while the Pe-LED device with TPBi as ETL has higher peak luminous efficiency of 6.4 cd/A and peak luminous power efficiency of 5.7 lm/W. To our knowledge this is the first report on high brightness light emitting device based on CH(NH2)2 PbBr3 widely known as FAPbBr3 nanocrystals in literature. © The Author(s) 2016.Item Open Access High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles(American Chemical Society, 2016) Xing, J.; Yan, F.; Zhao Y.; Chen, S.; Yu, H.; Zhang, Q.; Zeng, R.; Demir, Hilmi Volkan; Sun, X.; Huan, A.; Xiong, Q.Organometal halide perovskite has recently emerged as a very promising family of materials with augmented performance in electronic and optoelectronic applications including photovoltaic devices, photodetectors, and light-emitting diodes. Herein, we propose and demonstrate facile solution synthesis of a series of colloidal organometal halide perovskite CH3NH3PbX3 (X = halides) nanoparticles with amorphous structure, which exhibit high quantum yield and tunable emission from ultraviolet to near-infrared. The growth mechanism and photoluminescence properties of the perovskite amorphous nanoparticles were studied in detail. A high-efficiency green-light-emitting diode based on amorphous CH3NH3PbBr3 nanoparticles was demonstrated. The perovskite amorphous nanoparticle-based light-emitting diode shows a maximum luminous efficiency of 11.49 cd/A, a power efficiency of 7.84 lm/W, and an external quantum efficiency of 3.8%, which is 3.5 times higher than that of the best colloidal perovskite quantum-dot-based light-emitting diodes previously reported. Our findings indicate the great potential of colloidal perovskite amorphous nanoparticles in light-emitting devices. © 2016 American Chemical Society.Item Open Access Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes(American Chemical Society, 2018) Yan, F.; Xing, J.; Xing, G.; Quan, L.; Tan S.T.; Zhao, J.; Su, R.; Zhang, L.; Chen, S.; Zhao Y.; Huan, A.; Sargent, E. H.; Xiong, Q.; Demir, Hilmi VolkanLead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in lighting, however, remain still uncertain due to a variety of shortcomings in device performance including their limited levels of luminous efficiency achievable thus far. Here we show high-efficiency PeLEDs based on colloidal perovskite nanocrystals (PeNCs) synthesized at room temperature possessing dominant first-order excitonic radiation (enabling a photoluminescence quantum yield of 71% in solid film), unlike in the case of bulk perovskites with slow electron-hole bimolecular radiative recombination (a second-order process). In these PeLEDs, by reaching charge balance in the recombination zone, we find that the Auger nonradiative recombination, with its significant role in emission quenching, is effectively suppressed in low driving current density range. In consequence, these devices reach a maximum external quantum efficiency of 12.9% and a power efficiency of 30.3 lm W-1 at luminance levels above 1000 cd m-2 as required for various applications. These findings suggest that, with feasible levels of device performance, the PeNCs hold great promise for their use in LED lighting and displays.Item Open Access Inborn errors of OAS–RNase L in SARS-CoV-2–related multisystem inflammatory syndrome in children(American Association for the Advancement of Science (AAAS), 2022-12-20) Lee, D.; Pen, J. L.; Yatim, A.; Dong, B.; Aquino, Y.; Ogishi, M.; Pescarmona, R.; Talouarn, E.; Rinchai, D.; Zhang, P.; Perret, M.; Liu, Z.; Jordan, L.; Bozdemir, S. E.; Bayhan, G. I.; Beaufils, C.; Bizien, L.; Bisiaux, A.; Lei, W.; Hasan, M.; Chen, J.; Gaughan, C.; Asthana, A.; Libri, V.; Luna, Joseph M.; Jaffré, Fabrice; Hoffmann, H.; Michailidis, E.; Moreews, M.; Seeleuthner, Y.; Bilguvar, K.; Mane, S.; Flores, C.; Zhang, Y.; Arias, A. A.; Bailey, R.; Schlüter, A.; Milisavljevic, B.; Bigio, B.; Voyer, T. L.; Materna, M.; Gervais, A.; Moncada-Velez, M.; Pala, F.; Lazarov, T.; Levy, R.; Neehus, A.; Rosain, J.; Peel, J.; Chan, Y.; Morin, M.; Pino-Ramirez, R. M.; Belkaya, Serkan; Lorenzo, L.; Anton, J.; Delafontaine, S.; Toubiana, J.; Bajolle, F.; Fumadó, V.; DeDiego, M. L.; Fidouh, N.; Rozenberg, F.; Pérez-Tur, J.; Chen, S.; Evans, T.; Geissmann, F.; Lebon, P.; Weiss, S. R.; Bonnet, D.; Duval, X.; Cohort§, C.; Effort, C.; Pan-Hammarström, Q.; Planas, A. M.; Meyts, I.; Haerynck, F.; Pujol, A.; Sancho-Shimizu, V.; Dalgard, C.; Bustamante, J.; Puel, A.; Boisson-Dupuis, S.; Boisson, B.; Maniatis, T.; Zhang, Q.; Bastard, P.; Notarangelo, L.; Béziat, V.; Diego, R.; Rodriguez-Gallego, C.; Su, H. C.; Lifton, R. P.; Jouanguy, E.; Cobat, A.; Alsina, L.; Keles, S.; Haddad, E.; Abel, L.; Belot, A.; Quintana-Murci, L.; Rice, C. M.; Silverman, R. H.; Zhang, S.; Casanova, J.Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.Item Open Access Intercepting the lipid-induced integrated stress response reduces atherosclerosis(Elsevier, 2019) Onat, Umut I.; Yıldırım, Aslı D.; Tufanlı, Özlem; Çimen, İsmail; Kocatürk, Begüm; Veli, Zehra; Hamid, S.; Shimada, K.; Chen, S.; Sin, J.; Shah, P.; Gottlieb, R.; Arditi, M.; Erbay, EbruBackground Eukaryotic cells can respond to diverse stimuli by converging at serine-51 phosphorylation on eukaryotic initiation factor 2 alpha (eIF2α) and activate the integrated stress response (ISR). This is a key step in translational control and must be tightly regulated; however, persistent eIF2α phosphorylation is observed in mouse and human atheroma. Objectives Potent ISR inhibitors that modulate neurodegenerative disorders have been identified. Here, the authors evaluated the potential benefits of intercepting ISR in a chronic metabolic and inflammatory disease, atherosclerosis. Methods The authors investigated ISR’s role in lipid-induced inflammasome activation and atherogenesis by taking advantage of 3 different small molecules and the ATP-analog sensitive kinase allele technology to intercept ISR at multiple molecular nodes. Results The results show lipid-activated eIF2α signaling induces a mitochondrial protease, Lon protease 1 (LONP1), that degrades phosphatase and tensin-induced putative kinase 1 and blocks Parkin-mediated mitophagy, resulting in greater mitochondrial oxidative stress, inflammasome activation, and interleukin-1β secretion in macrophages. Furthermore, ISR inhibitors suppress hyperlipidemia-induced inflammasome activation and inflammation, and reduce atherosclerosis. Conclusions These results reveal endoplasmic reticulum controls mitochondrial clearance by activating eIF2α-LONP1 signaling, contributing to an amplified oxidative stress response that triggers robust inflammasome activation and interleukin-1β secretion by dietary fats. These findings underscore the intricate exchange of information and coordination of both organelles’ responses to lipids is important for metabolic health. Modulation of ISR to alleviate organelle stress can prevent inflammasome activation by dietary fats and may be a strategy to reduce lipid-induced inflammation and atherosclerosis.Item Open Access Modulating ohmic contact through InGaxNyOz interfacial layer for high-performance InGaN/GaN-based light-emitting diodes(Institute of Electrical and Electronics Engineers Inc., 2016) Zhu B.; Tan S.T.; Liu W.; Lu S.; Zhang, Y.; Chen, S.; Hasanov N.; Kang, X.; Demir, Hilmi VolkanWe report the improved performance of InGaN/GaN-based light-emitting diodes (LEDs) through the design and the formation of the InGaxNyOz interfacial layer, which maintains high reflectivity of silver and forms good ohmic contact between pristine silver and p-GaN. The interfacial layer was designed and formed by depositing a thin layer of indium tin oxide (ITO) on top of p-GaN, followed by thermal annealing, to enable the interdiffusion and the intermixing of In, Sn, Ga, O, and N atoms. Both electrical and optical performances of the LED with the optimized InGaxNyOz interfacial layer are improved, thus achieving the highest wall-plug efficiency, compared with those LEDs with and without ITO layers at operation current.Item Open Access De novo missense variants disrupting protein–protein interactions affect risk for autism through gene co-expression and protein networks in neuronal cell types(BioMed Central, 2020) Chen, S.; Wang, J.; Çiçek, Ercüment; Roeder, K.; Yu, H.; Devlin, B.Background: Whole-exome sequencing studies have been useful for identifying genes that, when mutated, affect risk for autism spectrum disorder (ASD). Nonetheless, the association signal primarily arises from de novo protein-truncating variants, as opposed to the more common missense variants. Despite their commonness in humans, determining which missense variants affect phenotypes and how remains a challenge. We investigate the functional relevance of de novo missense variants, specifically whether they are likely to disrupt protein interactions, and nominate novel genes in risk for ASD through integrated genomic, transcriptomic, and proteomic analyses. Methods: Utilizing our previous interactome perturbation predictor, we identify a set of missense variants that are likely disruptive to protein–protein interactions. For genes encoding the disrupted interactions, we evaluate their expression patterns across developing brains and within specific cell types, using both bulk and inferred cell-type-specific brain transcriptomes. Connecting all disrupted pairs of proteins, we construct an “ASD disrupted network.” Finally, we integrate protein interactions and cell-type-specific co-expression networks together with published association data to implicate novel genes in ASD risk in a cell-type-specific manner. Results: Extending earlier work, we show that de novo missense variants that disrupt protein interactions are enriched in individuals with ASD, often affecting hub proteins and disrupting hub interactions. Genes encoding disrupted complementary interactors tend to be risk genes, and an interaction network built from these proteins is enriched for ASD proteins. Consistent with other studies, genes identified by disrupted protein interactions are expressed early in development and in excitatory and inhibitory neuronal lineages. Using inferred gene co-expression for three neuronal cell types—excitatory, inhibitory, and neural progenitor—we implicate several hundred genes in risk (FDR ≤≤0.05), ~ 60% novel, with characteristics of genuine ASD genes. Across cell types, these genes affect neuronal morphogenesis and neuronal communication, while neural progenitor cells show strong enrichment for development of the limbic system. Limitations: Some analyses use the imperfect guilt-by-association principle; results are statistical, not functional. Conclusions: Disrupted protein interactions identify gene sets involved in risk for ASD. Their gene expression during brain development and within cell types highlights how they relate to ASD.Item Open Access Regulating the solvation structure of potassium Ions using a multidentate ether in potassium metal batteries(American Chemical Society, 2022-09-26) Chen, C.; Zhou, J.; Wenbinb, F.; Xueyinga, M.; Chen, S.; Sun, L.; Meng, Y.; Tao, K.; Ülgüt, Burak; Sun, P.; Bielawski, C.; Bielawski, C. W.; Geng, J.Potassium (K) is regarded as an alternative to lithium (Li) for use in contemporary energy storage devices owing to its high abundance and low electrochemical potential. However, because K ions are larger than Li ions, they exhibit different solvation properties that can ultimately affect device performance. Herein, a multidentate ether-based electrolyte is demonstrated to effectively solvate K ions and the solvation structures can be further modulated with cosolvents. The use of the multidentate ether-based electrolyte also suppresses the formation of K dendrites and significantly enhances the cycling stability of K//K symmetric cells (e.g., over 2000 h at 0.25 mA cm-2). © 2022 American Chemical Society. All rights reserved.Item Open Access The relationship between destination performance, overall satisfaction, and behavioral intention for distinct segments(Routledge, 2004) Baloglu, S.; Pekcan, A.; Chen, S.; Santos, J.Destination performance, visitor satisfaction, and favorable future behavior of visitors are key determinants of destination competitiveness. Most empirical work, assuming that overall tourist population is homogenous, investigates the relationships among product performance, satisfaction, and/or behavioral intentions in an aggregated manner. This study investigates these linkages for different segments of Canadian visitors of Las Vegas. The findings confirmed the mediating role of overall satisfaction for both segments and aggregated sample, and revealed variations in linkages and explanatory power of the models. The study concludes that the segment-based approach is more pragmatic because it provides segment-specific implications for destination management and marketing.