Browsing by Author "Arslan, Okan"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Embargo A unifying framework for selective routing problems(Elsevier, 2025-01-01) Dursunoğlu, Çağla Fatma; Arslan, Okan; Demir, Şebnem Manolya; Yetiş Kara, Bahar; Laporte, GilbertWe present a unifying framework for Selective Routing Problems (SRPs) through a systematic analysis. The common goal in SRPs is to determine an optimal vehicle route to serve a subset of vertices while covering another subset. They arise in diverse fields such as logistics, public health, disaster response, and urban development. To establish a unifying framework for different but related problems, we associate the notion of service with coverage and argue that routing is a tool of service. We classify SRPs according to their selectiveness degree and emphasize the breadth and depth of this problem in terms of its characteristics. This SRP framework helps us identify research gaps as well as potential future research areas. We present a generic mathematical model, use it to describe the connections among these problems and identify some identical problems presented under different names.Item Open Access Energy management in microgrids with plug-in electric vehicles, distributed energy resources and smart home appliances(Springer, Singapore, 2015) Arslan, Okan; Karaşan, Oya Ekin; Rajakaruna, S.; Shahnia, F.; Ghosh, A.Smart Grid is transforming the way energy is being generated and distributed today, leading to the development of environment-friendly, economic and efficient technologies such as plug-in electric vehicles (PEVs), distributed energy resources and smart appliances at homes. Among these technologies, PEVs pose both a risk by increasing the peak load as well as an opportunity for the existing energy management systems by discharging electricity with the help of Vehicle-to-grid (V2G) technology. These complications, together with the PEV battery degradation, compound the challenge in the management of existing energy systems. In this context, microgrids are proposed as an aggregation unit to smartly manage the energy exchange of these different state-of-the-art technologies. In this chapter, we consider a microgrid with a high level of PEV penetration into the transportation system, widespread utilization of smart appliances at homes, distributed energy generation and community-level electricity storage units. We propose a mixed integer linear programming energy management optimization model to schedule the charging and discharging times of PEVs, electricity storage units, and running times of smart appliances. Our findings show that simultaneous charging and discharging of PEV batteries and electricity storage units do not occur in model solutions due to system energy losses.Item Open Access Energy management in plug-in hybrid electric vehicle penetrated networks(2016-04) Arslan, OkanWith the introduction of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) into the transportation system, a new line of research has emerged in the literature that reconsiders existing problems from the electrified transportation point of view. In this context, our objective is to understand the challenges that arise with the emergence of PHEV technology through a series of essays. Due to their ability to use electricity and gasoline as sources of energy with di↵erent cost structures and limitations, PHEVs stand as both a challenge and an opportunity for the existing transportation systems. They provide transportation cost reductions by utilizing less gasoline, which in turn contribute to the environmental benefits. In this context, we addressed a practically important problem: ‘finding the minimum cost path for PHEVs’. We formally present this problem, show that it is NP-Complete and propose exact and heuristic solution techniques. Using these techniques, we investigate impacts of battery characteristics, driver preferences and road network features on travel costs of a PHEV for long-distance trips. Through this analysis, the location of charging stations is identified as one of the critical factors a↵ecting the costs. In this regard, we introduce another practically important problem: ‘Hybrid charging station location’. Di↵erent than existing approaches to the charging station location problems, we also consider PHEVs when locating stations. We propose a Benders Decomposition algorithm as an exact solution methodology, and accelerate the implementation by generating nondominated cuts. Finally, we analyze the cost and emission impacts of PHEV penetration into electricity networks with widespread adoption of distributed energy resources. Approaching PHEVs from a long-distance point of view, we introduced new problems and solution approaches to the literature. Our results show that by establishing an adequate level of the intercity charging station infrastructure, wellstudied benefits of electrified transportation in urban regions can be extended to long-distance trips.