Energy management in plug-in hybrid electric vehicle penetrated networks

Date

2016-04

Editor(s)

Advisor

Karaşan, Oya Ekin

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
42
downloads

Series

Abstract

With the introduction of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) into the transportation system, a new line of research has emerged in the literature that reconsiders existing problems from the electrified transportation point of view. In this context, our objective is to understand the challenges that arise with the emergence of PHEV technology through a series of essays. Due to their ability to use electricity and gasoline as sources of energy with di↵erent cost structures and limitations, PHEVs stand as both a challenge and an opportunity for the existing transportation systems. They provide transportation cost reductions by utilizing less gasoline, which in turn contribute to the environmental benefits. In this context, we addressed a practically important problem: ‘finding the minimum cost path for PHEVs’. We formally present this problem, show that it is NP-Complete and propose exact and heuristic solution techniques. Using these techniques, we investigate impacts of battery characteristics, driver preferences and road network features on travel costs of a PHEV for long-distance trips. Through this analysis, the location of charging stations is identified as one of the critical factors a↵ecting the costs. In this regard, we introduce another practically important problem: ‘Hybrid charging station location’. Di↵erent than existing approaches to the charging station location problems, we also consider PHEVs when locating stations. We propose a Benders Decomposition algorithm as an exact solution methodology, and accelerate the implementation by generating nondominated cuts. Finally, we analyze the cost and emission impacts of PHEV penetration into electricity networks with widespread adoption of distributed energy resources. Approaching PHEVs from a long-distance point of view, we introduced new problems and solution approaches to the literature. Our results show that by establishing an adequate level of the intercity charging station infrastructure, wellstudied benefits of electrified transportation in urban regions can be extended to long-distance trips.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Industrial Engineering

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)

Language

English

Type