Browsing by Author "Altan, H."
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Broadband terahertz modulators using self-gated graphene capacitors(Optical Society of America, 2015) Kakenov, N.; Balci, O.; Polat, E. O.; Altan, H.; Kocabas, C.We demonstrate a terahertz intensity modulator using a graphene supercapacitor which consists of two large-area graphene electrodes and an electrolyte medium. The mutual electrolyte gating between the graphene electrodes provides very efficient electrostatic doping with Fermi energies of 1 eV and a charge density of 8 × 1013 cm-2. We show that the graphene supercapacitor yields more than 50% modulation between 0.1 and 1.4 THz with operation voltages less than 3 V. The low insertion losses, high modulation depth over a broad spectrum, and the simplicity of the device structure are the key attributes of graphene supercapacitors for THz applications.Item Open Access Broadband THz modulators based on multilayer graphene on PVC(IEEE, 2016) Kaya, E.; Kakenov, Nurbek; Kocabaş, Coşkun; Altan, H.; Esentürk, O.In this study we present the direct terahertz time-domain spectroscopic measurement of CVD-grown multilayer graphene (MLG) on PVC substrate with an electrically tunable Fermi level. In a configuration consisting MLG and injected organic dopant, the transmitted intensity loss of terahertz radiation was observed with an applied voltage between 0 and 3.5 V. We showed that MLG on PVC devices provided approximately 100 % modulation between 0.2 and 1.5 THz at preferentially low operation voltage of ca. 3V. The observed modulation bandwidth in terahertz frequencies appears to be instrument limited.Item Open Access Comparison of terahertz technologies for detection and identification of explosives(SPIE, 2014-05) Beigang, R.; Biedron, S. G.; Dyjak, S.; Ellrich, F.; Haakestad, M.W.; Hübsch, D.; Kartaloglu, Tolga; Özbay, Ekmel; Ospald, F.; Palka, N.; Puc, U.; Czerwiñska, E.; Sahin, A. B.; Sešek, A.; Trontelj, J.; Švigelj, A.; Altan, H.; Van Rheenen, A.D.; Walczakowski, M.We present results on the comparison of different THz technologies for the detection and identification of a variety of explosives from our laboratory tests that were carried out in the framework of NATO SET-193 THz technology for stand-off detection of explosives: from laboratory spectroscopy to detection in the field under the same controlled conditions. Several laser-pumped pulsed broadband THz time-domain spectroscopy (TDS) systems as well as one electronic frequency-modulated continuous wave (FMCW) device recorded THz spectra in transmission and/or reflection. © 2014 SPIE.Item Open Access Compressive sensing imaging with a graphene modulator at THz frequency in transmission mode(IEEE, 2016) Özkan, V. A.; Takan, T.; Kakenov, Nurbek; Kocabaş, Coşkun; Altan, H.In this study we demonstrate compressive sensing imaging with a unique graphene based optoelectronic device which allows us to modulate the THz field through an array of columns or rows distributed throughout its face.Item Open Access Development of a rapid-scan fiber-integrated terahertz spectrometer(Springer New York LLC, 2014) Keskin, H.; Altan, H.; Yavas, S.; Ilday, F. O.; Eken, K.; Sahin, A. B.Scientists in terahertz (THz) wave technologies have benefited from the recent developments in ultrafast laser technologies and RF technologies and applied these new gained techniques into characterizing a wide variety of phenomena. Undoubtedly, the most successful of these applications has been in the development of time-domain terahertz spectroscopic and imaging systems which has been utilized in the characterization of dielectrics and semiconductors. This pulsed technique has allowed users to characterize dynamical behavior inside materials under illumination with picosecond resolution. Typically pump/probe or similar dynamical measurements require the use of amplified pulses derived from free-space solid state lasers in the μJ-mJ range and since interferometric techniques are typically used in pulsed measurements the measurement time of a THz spectrum can last at least tens of minutes. Better systems can be realized based on fiber laser technologies. Here we discuss the advantages of a THz spectrometer driven by an ultrafast Ytterbium doped fiber laser whose repetition rate can be tuned rapidly allowing for rapid dynamical measurements. The efficient gain medium, robust operation and compact design of the system opens up the possibility of exploring rapid detection of various materials as well as studying dynamical behavior using the high brightness source.Item Open Access Electrically controlled terahertz spatial light modulators with graphene arrays(IEEE, 2016) Kakenov, Nurbek; Takan, T.; Özkan, V. A.; Balcı, Osman; Polat, Emre Ozan; Altan, H.; Kocabaş, CoşkunGate-tunable high-mobility electrons on atomically thin graphene layers provide a unique opportunity to control electromagnetic waves in a very broad spectrum. In this paper, we describe an electrically-controlled multipixel terahertz light modulators. The spatial light modulator is fabricated using two large-area graphene layers grown by chemical vapor deposition and transferred on THz transparent and flexible substrates. Room temperature ionic liquid, inserted between the graphene, provides mutual gating between the graphene layers. We used passive matrix addressing to control local charge density thus the THz transmittance. With this device configuration, we were able to obtain 5×5 arrays of graphene modulator with 65% modulation between 0.1 to 1.5 THz.Item Open Access Graphene-enabled electrically controlled terahertz spatial light modulators(Optical Society of America, 2015-05-01) Kakenov, N.; Takan, T.; Ozkan, V. A.; Balcı, O.; Polat, E. O.; Altan, H.; Kocabas, C.In this Letter, we demonstrate a broadband terahertz (THz) spatial light modulator using 5×5 arrays of large area graphene supercapacitors. Our approach relies on controlling spatial charge distribution on a passive matrix array of patterned graphene electrodes. By changing the voltage bias applied to the rows and columns, we were able to pattern the THz transmittance through the device with high modulation depth and low operation voltage. We anticipate that the simplicity of the device architecture with high contrast THz modulation over a broad spectral range could provide new tools for THz imaging and communication systems.Item Open Access Modulation behaviors, conductivities, and carrier dynamics of single and multilayer graphenes(IEEE Computer Society, 2019) Kaya, E.; Kakenov, Nurbek; Kocabaş, Coşkun; Altan, H.; Esentürk, O.Time domain and time resolved terahertz studies of single- and multi-layer graphene (SLG and MLG) samples and modulator devices will be presented. A high performance up to 100% of modulators were observed with the devices even at very low voltages. High modulation depth over such a broad spectrum and simple device structure brings significant importance toward application of this type of device in THz and related technologies. In addition, conductivities of SLG and MLG devices were also investigated and a change in behavior was observed as the layer thickness increased. The charge carriers dynamics of the samples with pulp fluence and color was also highly interesting.Item Open Access Multilayer graphene broadband terahertz modulators with flexible substrate(Springer New York LLC, 2018) Kaya, E.; Kakenov, N.; Altan, H.; Kocabas, C.; Esenturk, O.Fabrication of terahertz modulators as simple devices with high modulation depth across a broad bandwidth is still very challenging. In this study, four different chemical vapor deposition grown multilayer graphene (MLG) modulators based on MLG/ionic liquid/gold sandwich structures have been investigated. Flexible substrates (PVC and PE) were chosen as host materials, and devices were fabricated with three different thicknesses. The resultant MLG devices can be operated at low voltages between 0 and 3.4 V providing nearly complete modulation between 0.2 and 1.5 THz with low insertion losses. Even with such low gate voltages, the devices have been doped significantly inducing 7-11-fold improvement in their sheet conductivities depending on device thickness. In addition, sheet conductivity has been improved more than three times as the graphene layer number increased from 30 to 100. With the demonstration of promising device performances, the proposed modulators can be potential candidates for applications in terahertz and related optoelectronic technologies.Item Open Access Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene(American Chemical Society, 2016) Kakenov, N.; Balci, O.; Takan, T.; Ozkan, V. A.; Altan, H.; Kocabas, C.We report experimental observation of electrically tunable coherent perfect absorption (CPA) of terahertz (THz) radiation in graphene. We develop a reflection-type tunable THz cavity formed by a large-area graphene layer, a metallic reflective electrode, and an electrolytic medium in between. Ionic gating in the THz cavity allows us to tune the Fermi energy of graphene up to 1 eV and to achieve a critical coupling condition at 2.8 THz with absorption of 99%. With the enhanced THz absorption, we were able to measure the Fermi energy dependence of the transport scattering time of highly doped graphene. Furthermore, we demonstrate flexible active THz surfaces that yield large modulation in the THz reflectivity with low insertion losses. We anticipate that the gate-tunable CPA will lead to efficient active THz optoelectronics applications.Item Open Access Terahertz time-domain study of silver nanoparticles synthesized by laser ablation in organic liquid(IEEE Microwave Theory and Techniques Society, 2016-07) Koral, C.; Ortaç, B.; Altan, H.We report the investigation of laser-synthesized Ag nanoparticles (Ag-NPs) in an organic liquid environment by using terahertz time-domain spectroscopy (THz-TDS) technique. Colloidal Ag-NPs with an average diameter of 10 nm in two-propanol solution through nanosecond pulsed laser ablation were synthesized. THz-TDS measurements were performed on different volumetric concentration of Ag-NPs suspensions placed in 2-mm path length quartz cuvette. Due to the dispersive and highly absorptive nature of the nano liquids, an approach based on extracting the optical properties through the changes in amplitude and phase solely around the main peak of THz waveform is developed. This approach allowed for an accurate estimation of the complex refractive index of the Metallic-NPs suspension for the different prepared volumetric concentrations. In addition, using Maxwell-Garnett theory, the NP concentration is also extracted. This method shows that the time-domain nature of the THz pulse measurement technique is extremely useful in instances where slight variations in highly dispersive samples need to be investigated.