Browsing by Author "Acar, B."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Item Open Access Online exercise ECG signal orthogonalization(1996) Acar, B.; Köymen H.In this paper an efficient method of making use of the redundancy in standard 12 lead ECG signals to eliminate noise is described. The method is based on orthogonalization via online Singular Value Decomposition (SVD). Its application as a filter to remove EMG noise and baseline wander are explained. A comparative study of ST analysis results of original and processed exercise ECG data is reported.Item Open Access SVD-based on-line exercise ECG signal orthogonalization(Institute of Electrical and Electronics Engineers, 1999-03) Acar, B.; Köymen, HayrettinAn orthogonalization method to eliminate unwanted signal components in standard 12-lead exercise electrocardiograms (ECG's) is presented in this work. A singular-value-decomposition-based algorithm is proposed to decompose the signal into two time-orthogonal subspaces; one containing the ECG and the other containing artifacts like baseline wander and electromyogram. The method makes use of redundancy in 12-lead ECG. The same method is also tested for reconstruction of a completely lost channel. The online implementation of the method is given. It is observed that the first two decomposed channels with highest energy are sufficient to reconstruct the ST-segment and J- point. The dimension of the signal space, on the other hand, does not exceed three. Data from 23 patients, with duration ranging from 9 to 21 min, are used.An orthogonalization method to eliminate unwanted signal components in standard 12-lead exercise electrocardiograms (ECG's) is presented in this work. A singular-value-decomposition-based algorithm is proposed to decompose the signal into two time-orthogonal subspaces; one containing the ECG and the other containing artifacts like baseline wander and electromyogram. The method makes use of redundancy in 12-lead ECG. The same method is also tested for reconstruction of a completely lost channel. The online implementation of the method is given. It is observed that the first two decomposed channels with highest energy are sufficient to reconstruct the ST-segment and J-point. The dimension of the signal space, on the other hand, does not exceed three. Data from 23 patients, with duration ranging from 9 to 21 min, are used.