Department of Molecular Biology and Genetics
Permanent URI for this communityhttps://hdl.handle.net/11693/115509
Browse
Browsing Department of Molecular Biology and Genetics by Author "Abel, L."
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Autoantibodies against type I IFNs in patients with life-threatening COVID-19(2020) Bastard, P.; Rosen, L. B.; Zhang, Q.; Michailidis, E.; Hoffmann, H.-H.; Zhang, Y.; Dorgham, K.; Philippot, Q.; Rosain, J.; Béziat, V.; Manry, J.; Shaw, E.; Haljasmägi, L.; Peterson, P.; Lorenzo, L.; Bizien, L.; Trouillet-Assant, S.; Dobbs, K.; Almeida de Jesus, A.; Belot, A.; Kallaste, A.; Catherinot, E.; Tandjaoui-Lambiotte, Y.; Le Pen, J.; Kerner, G.; Bigio, B.; Seeleuthner, Y.; Yang, R.; Bolze, A.; Spaan, A. N.; Delmonte, O. M.; Abers, M. S.; Aiuti, A.; Casari, G.; Lampasona, V.; Piemonti, L.; Ciceri, F.; Bilguvar, K.; Lifton, R. P.; Vasse, M.; Smadja, D. M.; Migaud, M.; Hadjadj, J.; Terrier, B.; Duffy, D.; Quintana-Murci, L.; van de Beek, D.; Roussel, L.; Vinh, D. C.; Tangye, S. G.; Haerynck, F.; Dalmau, D.; Martinez-Picado, J.; Brodin, P.; Nussenzweig, M. C.; Boisson-Dupuis, S.; Rodríguez-Gallego, C.; Vogt, G.; Mogensen, T. H.; Oler, A. J.; Gu, J.; Burbelo, P. D.; Cohen, J. I.; Biondi, A.; Bettini, L. R.; D'Angio, M.; Bonfanti, P.; Rossignol, P.; Mayaux, J.; Rieux-Laucat, F.; Husebye, E. S.; Fusco, F.; Ursini, M. V.; Imberti, L.; Sottini, A.; Paghera, S.; Quiros-Roldan, E.; Rossi, C.; Castagnoli, R.; Montagna, D.; Özçelik, Tayfun; Licari, A.; Marseglia, G. L.; Duval, X.; Ghosn, J.; Tsang, J. S.; Goldbach-Mansky, R.; Kisand, K.; Lionakis, M. S.; Puel, A.; Zhang, S.- Y.; Holland, S. M.; Gorochov, G.; Jouanguy, E.; Rice, C. M.; Cobat, A.; Notarangelo, L. D.; Abel, L.; Su, H. C.; Casanova, J. L.; HGID Lab; NIAID-USUHS Immune Response to COVID Group; COVID Clinicians; COVID-STORM Clinicians; Imagine COVID Group; French COVID Cohort Study Group; Milieu Intérieur Consortium; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic EffortInterindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.Item Open Access Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths(American Association for the Advancement of Science (AAAS), 2021-08-20) Bastard, P.; Gervais, A.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Manry, J.; Michailidis, E.; Hoffmann, H. H.; Eto, S.; Garcia-Prat, M.; Bizien, L.; Parra-Martinez, A.; Yang, R.; Haljasmagi, L.; Migaud, M.; Sarekannu, K.; Maslovskaja, J.; de Prost, N.; Tandjaoui-Lambiotte, Y.; Luyt, C. E.; Amador-Borrero, B.; Gaudet, A.; Poissy, J.; Morel, P.; Richard, P.; Cognasse, F.; Troya, J.; Trouillet-Assant, S.; Belot, A.; Saker, K.; Garcon, P.; Riviere, J. G.; Lagier, J. C.; Gentile, S.; Rosen, L. B.; Shaw, E.; Morio, T.; Tanaka, J.; Dalmau, D.; Tharaux, PL.; Sene, D.; Stepanian, A.; Megarbane, B.; Triantafyllia, V.; Fekkar, A.; Heath, J. R.; Franco, JL.; Anaya, J. M.; Sole-Violan, J.; Imberti, L.; Biondi, A.; Bonfanti, P.; Castagnoli, R.; Delmonte, O. M.; Zhang, Y.; Snow, A. L.; Holland, S. M.; Biggs, C. M.; Moncada-Velez, M.; Arias, A. A.; Lorenzo, L.; Boucherit, S.; Coulibaly, B.; Anglicheau, D.; Planas, A. M.; Haerynck, F.; Duvlis, S.; Nussbaum, R. L.; Özçelik, Tayfun; Keles, S.; Bousfiha, A. A.; El Bakkouri, J.; Ramirez-Santana, C.; Paul, S.; Pan-Hammarstrom, Q.; Hammarstrom, L.; Dupont, A.; Kurolap, A.; Metz, CN.; Aiuti, A.; Casari, G.; Lampasona, V.; Ciceri, F.; Barreiros, L. A.; Dominguez-Garrido, E.; Vidigal, M.; Zatz, M.; van de Beek, D.; Sahanic, S.; Tancevski, I.; Stepanovskyy, Y.; Boyarchuk, O.; Nukui, Y.; Tsumura, M.; Vidaur, L.; Tangye, S. G.; Burrel, S.; Duffy, D.; Quintana-Murci, L.; Klocperk, A.; Kann, N. Y.; Shcherbina, A.; Lau, Y. L.; Leung, D.; Coulongeat, M.; Marlet, J.; Koning, R.; Reyes, L. F.; Chauvineau-Grenier, A.; Venet, F.; Monneret, G.; Nussenzweig, MC.; Arrestier, R.; Boudhabhay, I.; Baris-Feldman, H.; Hagin, D.; Wauters, J.; Meyts, I.; Dyer, A. H.; Kennelly, SP.; Bourke, N. M.; Halwani, R.; Sharif-Askari, N. S.; Dorgham, K.; Sallette, J.; Sedkaoui, S. M.; AlKhater, S.; Rigo-Bonnin, R.; Morandeira, F.; Roussel, L.; Vinh, DC.; Ostrowski, SR.; Condino-Neto, A.; Prando, C.; Bondarenko, A.; Spaan, A. N.; Gilardin, L.; Fellay, J.; Lyonnet, S.; Bilguvar, K.; Lifton, R. P.; Mane, S.; Anderson, M. S.; Boisson, B.; Beziat, V.; Zhang, SY.; Andreakos, E.; Hermine, O.; Pujol, A.; Peterson, P.; Mogensen, T. H.; Rowen, L.; Mond, J.; Debette, S.; de Lamballerie, X.; Duval, X.; Mentre, F.; Zins, M.; Soler-Palacin, P.; Colobran, R.; Gorochov, G.; Solanich, X.; Susen, S.; Martinez-Picado, J.; Raoult, D.; Vasse, M.; Gregersen, P. K.; Piemonti, L.; Rodriguez-Gallego, C.; Notarangelo, LD.; Su, H. C.; Kisand, K.; Okada, S.; Puel, A.; Jouanguy, E.; Rice, C. M.; Tiberghien, P.; Zhang, Q.; Cobat, A.; Abel, L.; Casanova, J. L.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-α and/or IFN-ω are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or IFN-ω (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-β. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or IFN-ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years. By contrast, auto-Abs neutralizing IFN-β do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Item Open Access From your nose to your toes: a review of severe acute respiratory syndrome coronavirus 2 pandemic‒associated pernio(Elsevier Ltd, 2021) Arkin, L. M.; Moon, J. J.; Tran, J. M.; Asgari, S.; O'Farrelly, C.; Casanova, J. -L.; Cowen, E. W.; Mays, J. W.; Singh, A. M.; Drolet, B. A.; Aiuti, A.; Belot, A.; Bolze, A.; Bondarenko, A.; Sediva, A.; Shcherbina, A.; Planas, A. M.; Condino-Neto, A.; Pujol, A.; Catherine, B.; Flores, C.; Rodríguez-Gallego, C.; Prando, C.; Dalgard, C. L.; Roger, C.; Mansouri, D.; van, de Beek, D.; Vinh, D. C.; Hsieh, E.; Andreakos, E.; Haerynck, F.; Uddin, F.; Casari, G.; Novelli, G.; Pesole, G.; Meyts, I.; Tancevski, I.; Fellay, J.; Tur, J.; Kisand, K.; Okamoto, K.; Mironska, K.; Abel, L.; Renia, L.; Ng, L. F. P.; Shahrooei, M.; Soler-Palacín, P.; Brodin, P.; Pan-Hammarström, Q.; Halwani, R.; Perez, de Diego, R.; Al-Muhsen, S.; Espinosa-Padilla, S.; Okada, S.; Özçelik, Tayfun; Tayoun, A. A.; Karamitros, T.; Mogensen, T. H.; Lau, Y. L.Despite thousands of reported patients with pandemic-associated pernio, low rates of seroconversion and PCR positivity have defied causative linkage to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pernio in uninfected children is associated with monogenic disorders of excessive IFN-1 immunity, whereas severe COVID-19 pneumonia can result from insufficient IFN-1. Moreover, SARS-CoV-2 spike protein and robust IFN-1 response are seen in the skin of patients with pandemic-associated pernio, suggesting an excessive innate immune skin response to SARS-CoV-2. Understanding the pathophysiology of this phenomenon may elucidate the host mechanisms that drive a resilient immune response to SARS-CoV-2 and could produce relevant therapeutic targets.Item Open Access A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection(Elsevier, 2020) Casanova, J.-L.; Su, H. C.; Abel, L.; Aiuti, A.; Almuhsen, S.; Arias, A. A.; Bastard, P.; Biggs, C.; Bogunovic, D.; Boisson, B.; Boisson-Dupuis, S.; Bolze, A.; Bondarenko, A.; Bousfiha, A.; Brodin, P.; Bustamante, J.; Butte, M.; Casari, G.; Ciancanelli, M.; Cobat, A.; Condino-Neto, A.; Cooper, M.; Dalgard, C.; Espinosa, S.; Feldman, H.; Fellay, J.; Franco, J. L.; Hagin, D.; Itan, Y.; Jouanguy, E.; Lucas, C.; Mansouri, D.; Meyts, I.; Milner, J.; Mogensen, T.; Morio, T.; Ng, L.; Notarangelo, L. D.; Okada, S.; Özçelik, Tayfun; Palacín, P. S.; Planas, A.; Prando, C.; Puel, A.; Pujol, A.; Redin, C.; Renia, L.; Gallego, J. C. R.; Quintana-Murci, L.; Sancho-Shimizu, V.; Sankaran, V.; Seppänen, M. R. J.; Shahrooei, M.; Snow, A.; Spaan, A.; Tangye, S.; Tur, J. P.; Turvey, S.; Vinh, D. C.; von Bernuth, H.; Wang, X.; Zawadzki, P.; Zhang, Q.; Zhang, S.SARS-CoV-2 infection displays immense inter-individual clinical variability, ranging from silent infection to lethal disease. The role of human genetics in determining clinical response to the virus remains unclear. Studies of outliers—individuals remaining uninfected despite viral exposure and healthy young patients with life-threatening disease—present a unique opportunity to reveal human genetic determinants of infection and disease.Item Open Access Inborn errors of OAS–RNase L in SARS-CoV-2–related multisystem inflammatory syndrome in children(American Association for the Advancement of Science (AAAS), 2022-12-20) Lee, D.; Pen, J. L.; Yatim, A.; Dong, B.; Aquino, Y.; Ogishi, M.; Pescarmona, R.; Talouarn, E.; Rinchai, D.; Zhang, P.; Perret, M.; Liu, Z.; Jordan, L.; Bozdemir, S. E.; Bayhan, G. I.; Beaufils, C.; Bizien, L.; Bisiaux, A.; Lei, W.; Hasan, M.; Chen, J.; Gaughan, C.; Asthana, A.; Libri, V.; Luna, Joseph M.; Jaffré, Fabrice; Hoffmann, H.; Michailidis, E.; Moreews, M.; Seeleuthner, Y.; Bilguvar, K.; Mane, S.; Flores, C.; Zhang, Y.; Arias, A. A.; Bailey, R.; Schlüter, A.; Milisavljevic, B.; Bigio, B.; Voyer, T. L.; Materna, M.; Gervais, A.; Moncada-Velez, M.; Pala, F.; Lazarov, T.; Levy, R.; Neehus, A.; Rosain, J.; Peel, J.; Chan, Y.; Morin, M.; Pino-Ramirez, R. M.; Belkaya, Serkan; Lorenzo, L.; Anton, J.; Delafontaine, S.; Toubiana, J.; Bajolle, F.; Fumadó, V.; DeDiego, M. L.; Fidouh, N.; Rozenberg, F.; Pérez-Tur, J.; Chen, S.; Evans, T.; Geissmann, F.; Lebon, P.; Weiss, S. R.; Bonnet, D.; Duval, X.; Cohort§, C.; Effort, C.; Pan-Hammarström, Q.; Planas, A. M.; Meyts, I.; Haerynck, F.; Pujol, A.; Sancho-Shimizu, V.; Dalgard, C.; Bustamante, J.; Puel, A.; Boisson-Dupuis, S.; Boisson, B.; Maniatis, T.; Zhang, Q.; Bastard, P.; Notarangelo, L.; Béziat, V.; Diego, R.; Rodriguez-Gallego, C.; Su, H. C.; Lifton, R. P.; Jouanguy, E.; Cobat, A.; Alsina, L.; Keles, S.; Haddad, E.; Abel, L.; Belot, A.; Quintana-Murci, L.; Rice, C. M.; Silverman, R. H.; Zhang, S.; Casanova, J.Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.Item Open Access The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies(National Academy of Sciences, 2022-05-16) Manry, J.; Bastard, P.; Gervais, A.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Michailidis, E.; Hoffmann, H.; Eto, S.; Garcia-Prat, M.; Bizien, L.; Parra-Martínez, A.; Yang, R.; Haljasmägi, L.; Migaud, M.; Särekannu, K.; Maslovskaja, J.; de Prost, N.; Tandjaoui-Lambiotte, Y.; Luyt, C.; Amador-Borrero, B.; Gaudet, A.; Poissy, J.; Morel, P.; Richard, P.; Cognasse, F.; Troya, J.; Trouillet-Assant, S.; Belot, A.; Saker, K.; Garçpn, P.; Rivière, J. G.; Lagier, J.; Gentile, S.; Rosen, L. B.; Shaw, E.; Morio, T.; Tanaka, J.; Dalmau, D.; Tharaux, P.; Sene, D.; Stepanian, A.; Mégarbane, B.; Triantafyllia, V.; Fekkar, A.; Heath, J. R.; Franco, J. L.; Anaya, J.; Solé-Violán, J.; Imberti, L.; Biondi, A.; Bonfanti, P.; Castagnoli, R.; Delmonte, O. M.; Zhang, Y.; Snow, A. L.; Holland, S. M.; Biggs, C. M.; Moncada-Vélez, M.; Arias, A. A.; Lorenzo, L.; Boucherit, S.; Anglicheau, D.; Planas, A. M.; Haerynck, F.; Duvlis, S.; Ozcelik, Tayfun; Keles, S.; Bousfiha, A. A.; El Bakkouri, J.; Ramirez-Santana, C.; Paul, S.; Pan-Hammarström, Q.; Hammarström, L.; Dupont, A.; Kurolap, A.; Metz, C. N.; Aiuti, A.; Casari, G.; Lampasona, V.; Ciceri, F.; Barreiros, L. A.; Dominguez-Garrido, E.; Vidigal, M.; Zatz, M.; van de Beek, D.; Sahanic, S.; Tancevski, I.; Stepanovskyy, Y.; Boyarchuk, O.; Nukui, Y.; Tsumura, M.; Vidaur, L.; Tangye, S. G.; Burrel, S.; Duffy, D.; Quintana-Murci, L.; Klocperk, A.; Kann, N. Y.; Shcherbina, A.; Lau, Y.; Leung, D.; Coulongeat, M.; Marlet, J.; Koning, R.; Reyes, L. F.; Chauvineau-Grenier, A.; Venet, F.; Monneret, G.; Nussenzweig, M. C.; Arrestier, R.; Boudhabhay, I.; Baris-Feldman, H.; Hagin, D.; Wauters, J.; Meyts, I.; Dyer, A. H.; Kennelly, S. P.; Bourke, N. M.; Halwani, R.; Sharif-Askari, F. S.; Dorgham, K.; Sallette, J.; Sedkaoui, S. M.; AlKhater, S.; Rigo-Bonnin, R.; Morandeira, F.; Roussel, L.; Vinh, D. C.; Erikstrup, C.; Condino-Neto, A.; Prando, C.; Bondarenko, A.; Spaan, A. N.; Gilardin, L.; Fellay, J.; Lyonnet, S.; Bilguvar, K.; Lifton, R. P.; Mane, S.; Anderson, M. S.; Boisson, B.; Béziat, V.; Zhang, S.; Andreakos, E.; Hermine, O.; Pujol, A.; Peterson, P.; Mogensen, T. H.; Rowen, L.; Mond, J.; Debette, S.; de Lamballerie, X.; Burdet, C.; Bouadma, L.; Zins, M.; Soler-Palacin, P.; Colobran, R.; Gorochov, G.; Solanich, X.; Susen, S.; Martinez-Picado, J.; Raoult, D.; Vasse, M.; Gregersen, P. K.; Piemonti, L.; Rodríguez-Gallego, C.; Notarangelo, L. D.; Su, H. C.; Kisand, K.; Okada, S.; Puel, A.; Jouanguy, E.; Rice, C. M.; Tiberghien, P.; Zhang, Q.; Casanova, J.; Abel, L.; Cobat, A.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged [removed]4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.Item Open Access SARS-CoV-2–related MIS-C: A key to the viral and genetic causes of Kawasaki disease?(Rockefeller University Press, 2021) Sancho-Shimizu, V.; Brodin, P.; Cobat, A.; Biggs, C. M.; Toubiana, J.; Lucas, C. L.; Henrickson, S. E.; Belot, A.; MIS-C@CHGE; Tangye, S. G.; D. Milner, J.; Levin, M.; Abel, L.; Bogunovic, D.; Casanova, J.-L.; Zhang, S. -Y.; Özçelik, TayfunMultisystem inflammatory syndrome in children (MIS-C) emerged in April 2020 in communities with high COVID-19 rates. This new condition is heterogenous but resembles Kawasaki disease (KD), a well-known but poorly understood and clinically heterogenous pediatric inflammatory condition for which weak associations have been found with a myriad of viral illnesses. Epidemiological data clearly indicate that SARS-CoV-2 is the trigger for MIS-C, which typically occurs about 1 mo after infection. These findings support the hypothesis of viral triggers for the various forms of classic KD. We further suggest that rare inborn errors of immunity (IEIs) altering the immune response to SARS-CoV-2 may underlie the pathogenesis of MIS-C in some children. The discovery of monogenic IEIs underlying MIS-C would shed light on its pathogenesis, paving the way for a new genetic approach to classic KD, revisited as a heterogeneous collection of IEIs to viruses.Item Open Access Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant(NLM (Medline), 2018) Boisson-Dupuis, S.; Ramirez-Alejo, N.; Li, Z.; Patin, E.; Rao, G.; Kerner, G.; Lim, C. K.; Krementsov, D. N.; Hernandez, N.; Ma, C. S.; Zhang, Q.; Markle, J.; Martinez-Barricarte, R.; Payne, K.; Fisch, R.; Deswarte, C.; Halpern, J.; Bouaziz, M.; Mulwa, J.; Sivanesan, D.; Lazarov, T.; Naves, R.; Garcia, P.; Itan, Y.; Boisson, B.; Checchi, A.; Jabot-Hanin, F.; Cobat, A.; Guennoun, A.; Jackson, C. C.; Pekcan, S.; Çalışkaner, Z.; Inostroza, J.; Costa-Carvalho, B. T.; De Albuquerque, J. A. T.; Garcia-Ortiz, H.; Orozco, L.; Özçelik, Tayfun; Abid, A.; Rhorfi, I. A.; Souhi, H.; Amrani, H. N.; Zegmout, A.; Geissmann, F.; Michnick, S. W.; Muller-Fleckenstein, I.; Fleckenstein, B.; Puel, A.; Ciancanelli, M. J.; Marr, N.; Abolhassani, H.; Balcells, M. E.; Condino-Neto, A.; Strickler, A.; Abarca, K.; Teuscher, C.; Ochs, H. D.; Reisli, I.; Sayar, E. H.; El-Baghdadi, J.; Bustamante, J.; Hammarström, L.; Tangye, S. G.; Pellegrini, S.; Quintana-Murci, L.; Abel, L.; Casanova, J. -L.Inherited IL-12Rβ1 and TYK2 deficiencies impair both IL-12- and IL-23-dependent IFN-γ immunity and are rare monogenic causes of tuberculosis, each found in less than 1/600,000 individuals. We show that homozygosity for the common TYK2 P1104A allele, which is found in about 1/600 Europeans and between 1/1000 and 1/10,000 individuals in regions other than East Asia, is more frequent in a cohort of patients with tuberculosis from endemic areas than in ethnicity-adjusted controls (P = 8.37 × 10-8; odds ratio, 89.31; 95% CI, 14.7 to 1725). Moreover, the frequency of P1104A in Europeans has decreased, from about 9% to 4.2%, over the past 4000 years, consistent with purging of this variant by endemic tuberculosis. Surprisingly, we also show that TYK2 P1104A impairs cellular responses to IL-23, but not to IFN-α, IL-10, or even IL-12, which, like IL-23, induces IFN-γ via activation of TYK2 and JAK2. Moreover, TYK2 P1104A is properly docked on cytokine receptors and can be phosphorylated by the proximal JAK, but lacks catalytic activity. Last, we show that the catalytic activity of TYK2 is essential for IL-23, but not IL-12, responses in cells expressing wild-type JAK2. In contrast, the catalytic activity of JAK2 is redundant for both IL-12 and IL-23 responses, because the catalytically inactive P1057A JAK2, which is also docked and phosphorylated, rescues signaling in cells expressing wild-type TYK2. In conclusion, homozygosity for the catalytically inactive P1104A missense variant of TYK2 selectively disrupts the induction of IFN-γ by IL-23 and is a common monogenic etiology of tuberculosis. CopyrightItem Open Access Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs(American Association for the Advancement of Science (AAAS), 2022-06-14) Bastard, P.; Vazquez, S. E.; Liu, J.; Laurie, M. T.; Wang, C. Y.; Gervais, A.; Voyer, T. L.; Bizien, L.; Zamecnik, C.; Philippot, Q.; Rosain, J.; Catherinot, E.; Willmore, A.; Mitchell, A. M.; Bair, R.; Garçon, P.; Kenney, H.; Fekkar, A.; Salagianni, M.; Poulakou, G.; Siouti, E.; Sahanic, S.; Tancevski, I.; Weiss, G.; Nagl, L; Manry, J.; Duvlis, S.; Arroyo-Sánchez, D.; Artal, E. P.; Rubio, L.; Perani, C.; Bezzi, M.; Sottini, A.; Quaresima, V.; Roussel, L.; Vinh, D. C.; Reyes, L. F.; Garzaro, M.; Hatipoglu, N.; Boutboul, D.; Tandjaoui-Lambiotte, Y.; Borghesi, A.; Aliberti, A.; Cassaniti, I.; Venet, F.; Monneret, G.; Halwani, R.; Sharif-Askari, N. S.; Danielson, J.; Burrel, S.; Morbieu, C.; Stepanovskyy, Y.; Bondarenko, A.; Volokha, A.; Boyarchuk, O.; Gagro, A.; Neuville, M.; Neven, B.; Keles, S.; Hernu, R.; Bal, A.; Novelli, A.; Novelli, G.; Saker, K.; Ailioaie, O.; Antolí, A.; Jeziorski, E.; Rocamora-Blanch, G.; Teixeira, C.; Delaunay, C.; Lhuillier, M.; Turnier, P. L.; Zhang, Y.; Mahevas, M.; Pan-Hammarström, Q.; Abolhassani, H.; Bompoil, T.; Dorgham, K.; Consortium, C.; Group, F.; Consortium, C.; Gorochov, G.; Laouenan, C.; Rodríguez-Gallego, C.; Ng, L. F. P.; Renia, L.; Pujol, A.; Belot, A.; Raffi, F.; Allende, L. M.; Martinez-Picado, J.; Özçelik, Tayfun; Imberti, L.; Notarangelo, L. D.; Troya, J.; Solanich, X.; Zhang, S.; Puel, A.; Wilson, M. R.; Trouillet-Assant, S.; Abel, L.; Jouanguy, E.; Ye, C. J.; Cobat, A.; Thompson, L. M.; Andreakos, E.; Zhang, Q.; Anderson, M. S.; Casanova, J.; DeRisi, J. L.Life-threatening “breakthrough” cases of critical COVID-19 are attributed to poor or waning antibody (Ab) response to SARS-CoV-2 vaccines in individuals already at risk. Preexisting auto-Abs neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; their contribution to hypoxemic breakthrough cases in vaccinated people is unknown. We studied a cohort of 48 individuals (aged 20 to 86 years) who received two doses of a messenger RNA (mRNA) vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Ab levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal Ab response to the vaccine. Among them, 10 (24%) had auto-Abs neutralizing type I IFNs (aged 43 to 86 years). Eight of these 10 patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, whereas two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized type I IFNs at 10 ng/ml and three at 100 pg/ml only. Seven patients neutralized SARS-CoV-2 D614G and Delta efficiently, whereas one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only type I IFNs at 100 pg/ml neutralized both D614G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating Abs capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a notable proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population.Item Open Access X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19(American Association for the Advancement of Science (AAAS), 2021-08-20) Asano, T.; Boisson, B.; Onodi, F.; Matuozzo, D.; Moncada-Velez, M.; Renkilaraj, M. R. L. M.; Zhang, P.; Meertens, L.; Bolze, A.; Materna, M.; Korniotis, S.; Gervais, A.; Talouarn, E.; Bigio, B.; Seeleuthner, Y.; Bilguvar, K.; Zhang, Y.; Neehus, AL.; Ogishi, M.; Pelham, SJ.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Soler-Palacin, P.; Colobran, R.; Martin-Nalda, A.; Riviere, J. G.; Tandjaoui-Lambiotte, Y.; Chaibi, K.; Shahrooei, M.; Darazam, I. A.; Olyaei, NA.; Mansouri, D.; Palabiyik, F.; Özçelik, Tayfun; Novelli, G.; Novelli, A.; Casari, G.; Aiuti, A.; Carrera, P.; Bondesan, S.; Barzaghi, F.; Rovere-Querini, P.; Tresoldi, C.; Franco, J. L.; Rojas, J.; Reyes, LF.; Bustos, IG.; Arias, AA.; Morelle, G.; Kyheng, C.; Troya, J.; Planas-Serra, L.; Schluter, A.; Gut, M.; Pujol, A.; Allende, L. M.; Rodriguez-Gallego, C.; Flores, C.; Cabrera-Marante, O.; Pleguezuelo, DE.; de Diego, R. P.; Keles, S.; Aytekin, G.; Akcan, O. M.; Bryceson, Y. T.; Bergman, P.; Brodin, P.; Smole, D.; Smith, C. I. E.; Norlin, A. C.; Campbell, T. M.; Covill, LE.; Hammarstrom, L.; Pan-Hammarstrom, Q.; Abolhassani, H.; Mane, S.; Marr, N.; Ata, M.; Al Ali, F.; Khan, T.; Spaan, A. N.; Dalgard, C. L.; Bonfanti, P.; Biondi, A.; Tubiana, S.; Burdet, C.; Nussbaum, R.; Kahn-Kirby, A.; Snow, AL.; Bustamante, J.; Puel, A.; Boisson-Dupuis, S.; Zhang, S. Y.; Beziat, V.; Lifton, R. P.; Bastard, P.; Notarangelo, L. D.; Abel, L.; Su, H. C.; Jouanguy, E.; Amara, A.; Soumelis, V.; Cobat, A.; Zhang, Q.; Casanova, J. L.Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean, 36.7 years) from a cohort of 1202 male patients aged 0.5 to 99 years (mean, 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean, 38.7 years) tested carry such TLR7 variants (P = 3.5 × 10−5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n = 2) or moderate (n = 1), severe (n = 1), or critical (n = 1) pneumonia. Two patients from a cohort of 262 male patients with severe COVID-19 pneumonia (mean, 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is <6.5 × 10−4. We show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7. The patients’ blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.