Multifunctional integrated photonic switches

Date
2005
Authors
Demir, H. M.
Sabnis, V. A.
Fidaner, O.
Zheng, J.-F.
Harris, J. S.
Miller, D. A. B.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
IEEE Journal on Selected Topics in Quantum Electronics
Print ISSN
1077-260X
Electronic ISSN
1558-4542
Publisher
Institute of Electrical and Electronics Engineers
Volume
11
Issue
1
Pages
86 - 96
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Traditional optical-electronic-optical (o-e-o) conversion in today’s optical networks requires cascading separately packaged electronic and optoelectronic chips and propagating high-speed electrical signals through and between these discrete modules. This increases the packaging and component costs, size, power consumption, and heat dissipation. As a remedy, we introduce a novel, chip-scale photonic switching architecture that operates by confining high-speed electrical signals in a compact optoelectronic chip and provides multiple network functions on such a single chip. This new technology features low optical and electrical power consumption, small installation space, high-speed operation, two-dimensional scalability, and remote electrical configurability. In this paper, we present both theoretical and experimental discussion of our monolithically integrated photonic switches that incorporate quantum-well waveguide modulators directly driven by on-chip surface-illuminated photodetectors. These switches can be conveniently arrayed two-dimensionally on a single chip to realize a number of network functions. Of those, we have experimentally demonstrated arbitrary wavelength conversion across 45 nm and dual-wavelength broadcasting over 20 nm, both spanning the telecommunication center band (1530–1565 nm) at switching speeds up to 2.5 Gb/s. Our theoretical calculations predict the capability of achieving optical switching at rates in excess of 10 Gb/s using milliwatt-level optical and electrical switching powers.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)