• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      On-the-fly ensemble classifier pruning in evolving data streams

      Thumbnail
      Embargo Lift Date: 2020-03-27
      View / Download
      1.3 Mb
      Author(s)
      Elbaşı, Sanem
      Advisor
      Can, Fazlı
      Date
      2019-09
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      211
      views
      78
      downloads
      Abstract
      Ensemble pruning is the process of selecting a subset of component classifiers from an ensemble which performs at least as well as the original ensemble while reducing storage and computational costs. Ensemble pruning in data streams is a largely unexplored area of research. It requires analysis of ensemble components as they are running on the stream and differentiation of useful classifiers from redundant ones. We present two on-the-fly ensemble pruning methods; Class-wise Component Ranking-based Pruner (CCRP) and Cover Coefficient-based Pruner (CCP). CCRP aims that the resulting pruned ensemble contains the best performing classifier for each target class and hence, reduces the effects of class imbalance. On the other hand, CCP aims to select components that make misclassification errors on different instances. The conducted experiments on real-world and synthetic data streams demonstrate that different types of ensembles that integrate pruners consume significantly less memory and perform significantly faster without hurting the predictive performance.
      Keywords
      Ensemble learning
      Ensemble pruning
      Ensemble efficiency
      Concept drift
      Permalink
      http://hdl.handle.net/11693/52517
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy