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ABSTRACT

ON-THE-FLY ENSEMBLE CLASSIFIER PRUNING IN
EVOLVING DATA STREAMS

Sanem Elbaşı
M.S. in Computer Engineering

Advisor: Fazlı Can
September 2019

Ensemble pruning is the process of selecting a subset of component classifiers
from an ensemble which performs at least as well as the original ensemble while
reducing storage and computational costs. Ensemble pruning in data streams is a
largely unexplored area of research. It requires analysis of ensemble components
as they are running on the stream and differentiation of useful classifiers from re-
dundant ones. We present two on-the-fly ensemble pruning methods; Class-wise
Component Ranking-based Pruner (CCRP) and Cover Coefficient-based Pruner
(CCP). CCRP aims that the resulting pruned ensemble contains the best perform-
ing classifier for each target class and hence, reduces the effects of class imbalance.
On the other hand, CCP aims to select components that make misclassification
errors on different instances. The conducted experiments on real-world and syn-
thetic data streams demonstrate that different types of ensembles that integrate
pruners consume significantly less memory and perform significantly faster with-
out hurting the predictive performance.

Keywords: Ensemble learning, Ensemble pruning, Ensemble efficiency, Concept
drift.
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ÖZET

EVRİLEN VERİ AKIŞLARINDA HEYET
SINIFLANDIRICILARIN ANINDA BUDANMASI

Sanem Elbaşı
Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Fazlı Can
Eylül 2019

Heyet yaklaşımlı sınıflandırıcılarda budama, bellek kullanımını ve işlem za-
manını azaltırken en azından orijinal heyet kadar başarılı bir alt küme seçme
işlemidir. Heyet yaklaşımlı sınıflandırıcılarda budama konusu veri akışlarında
üzerine düşülmemiş bir araştırma konusudur. Heyet bileşenlerinin veri akışı de-
vam ederken analiz edilmesini ve faydalı bileşenlerin gereksiz olanlardan ayrıştırıl-
masını gerektirir. Bu tezde iki anında heyet budama metodu önerilmiştir; CCRP
ve CCP. CCRP seçilen alt kümede her bir hedef sınıf için en iyi sınıflandır-
mayı yapan bileşenlerin bulunmasını hedefliyerek veri akışındaki sınıf dağılım-
larının dengesizliğinin etkilerini azaltır. Öte yandan, CCP farklı veri nokta-
larında hatalar yapan bileşenleri seçer. Gerçek ve sentetik veri akışları üzerinde
farklı sınıflandırıcılar ile yapılan deneyler, budama işleminin kaynaştırıldığı heyet
sınıflandırıcılarının bellek kullanımını ve harcadıkları zamanı istatistiksel açıdan
önemli derecede azaltırken sınıfların tahminsel başarına zarar vermediğini göster-
miştir.

Anahtar sözcükler : Heyet sınıflandırıcılar, Heyet yaklaşımlı sınıflandırıcılarda bu-
dama, Heyet verimliliği, Kavram sürüklenmesi.
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Chapter 1

Introduction

This chapter introduces the problems addressed in this thesis and gives an
overview of subsequent chapters. Section 1.1 introduces the ensemble systems
by highlighting their advantages over single model learners and the importance
of the diversity among the models within an ensemble. In section 1.2, we discuss
the challenges of stream classification and significance of handling concept drifts
in data streams. Section 1.3 describes the motivation behind this study. Section
1.4 summarizes our contributions.

1.1 Ensemble Systems

Ensemble systems consist of several machine learning models and operate by com-
bining the decisions of these models. Generalization ability of a single machine
learning model is bounded by the noises, outliers and overlapping data distribu-
tions. By combining decisions of multiple models, ensemble systems are able to
achieve higher generalization over the data [3].
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Figure 1.1: Ensemble Systems. Combining decision boundaries of several classi-
fiers to achieve a better decision boundary over the dataset. Revised from [1]

Since it is almost impossible to train a classifier that classifies each data point
correctly, we can only hope for a classifier that has learned a region of the dataset
and is able to correctly classify data points within that region. By using ensemble
models, we are able to improve the overall performance of the system. The main
idea behind the ensembles is that if a model did not learn a region on the dataset,
another model might be able to cover that region. In other words, if a model
misclassifies a data point, another model on the ensemble can correctly classify
that data point. In order to obtain an ensemble with high accuracy, ideally we
need to have distinct classifiers within the ensemble so that no two models in the
ensemble misclassify the same data point [1].
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1.2 Concept Drifts in Data Streams

An ordered sequence of items that arrive in a timely fashion is called a data stream.
Main challenges of data stream classifications are huge volume of the data, time
and memory constraints and concept drifts that occur over time. Data classifica-
tion models learn relations amongst input features and target classes; however,
in data streams, there is always an uncertainty about the future data instances
[4]. Over time, the relationship between the input features and the target classes
may change and the same features may lead to different target classes [5]. Such
changes in the relation between data points and their corresponding classes over
time are called concept drifts [6]. Concept drifts are categorized under two main
subjects; real and virtual concept drifts [7]. In real concept drift, the true deci-
sion boundary of the problem changes, which leads to misclassification of data
points. Where in virtual concept drifts the true decision boundary stays the same
but the data distributions are shifted [8]. Even though the true decision bound-
ary stays the same, the change in the data distribution can affect the predictive
performance of the models. When concept drifts arise either real or virtual,
the previously learned relationship between the input data point and the target
classes may lead to misclassification.

Figure 1.2 demonstrates the four types of real concept drifts; sudden, incre-
mental, gradual and reoccurring drifts [2, 5, 9, 10]. Sudden or abrupt drifts occur
instantly and the changes in the target classes are constant. Incremental drifts
occur slowly in a timely manner. Gradual drifts occur when the change in data
example involves the class distribution of various data [11]. When the change in
the concept reverts over time, it is called reoccurring drift. There are also other
types of changes in the data that may be observed over time, outliers and noise,
which should not be considered as concept drifts and the models should not take
action when they occur.
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Figure 1.2: Four patterns of real concept drift over time. Revised from [2]

1.3 Motivation

Data streams are environments such as network event logs, video streams, call
records and transaction records where a vast amount of data is generated at
high speed [12]. Classification models in data streams have to work under strict
time and memory constraints and be able to adapt changes in the distribution of
data over time [5]. Robustness against concept drifts is a topic that is extensively
studied in the literature [13, 14]. As data continuously arrive, learned information
from the past instances become irrelevant under concept drifts. Classification
models need to adapt to the new concepts by not only learning the new concepts
but also forgetting the now-obsolete ones [14].

Ensembles are common choices for models in stream environments, as they of-
ten improve predictive performance while providing robustness against concept-
drifting and time-evolving data [5]. Ensembles employ different approaches for
dealing with concept drifts, such as replacing the weakest / lowest weighted clas-
sifier with a new one that is trained with the more recent data [13], or updating
ensemble weights regularly [13, 15]. Despite the popularity and prevalence of en-
semble learning in data streams, ensemble pruning is still a vastly undiscovered
area of research in the stream mining community.

4



1.4 Contributions

In this study, we tackle the task of ensemble pruning in data streams for multi-
class classification. Our contributions are as follows. We,

• introduce 2 explicit pruning techniques that can be integrated into any
type of streaming ensemble and called whenever pruning is requested. Our
methods result in pruned ensembles that are more efficient in terms of
memory consumption and execution time.

• provide to the best of our knowledge, the first large-scale1 on-the-fly ensem-
ble pruning methods for streaming data.

• propose CCRP2, a class imbalance-aware pruning method, where a pruned
ensemble does not lose its ability to classify rare or less-frequent classes, as
a result of our class-wise component prediction analysis and ranking.

• present CCP2, a misclassified instances aware pruning method, where we
select classifiers such that selected classifiers are as unique as possible with
respect to the misclassified instances.

1The previous studies [16, 17] experimented on datasets with number of instances in the
scales of hundreds or thousands

2Full phrases are given in Chapter 4

5



Chapter 2

Problem Definition and Notation

In data stream classification task, main challenges are computational cost, ex-
ecution time, memory consumption and handling concept drifts. Figure 2.1
demonstrates the effects of the concept drifts in the stream environment and
the importance of handling concept drifts. Ensemble classifiers are shown to be
better performing with drifting environments than single classifiers [18, 19, 20].
However, ensembles with a large number of classifiers entail large memory con-
sumption and execution time which does not comply with the constraints of the
data stream classification task. Selecting complementary classifiers from the en-
semble and prune the rest of the ensemble copes with the execution time and
memory consumption constraints[21]. On top of everything, a pruned ensemble
with complementary classifiers can achieve higher accuracy results and cope with
the concept drifts by removing the classifiers that learned now-obsolete informa-
tion [22, 23, 24, 25]. One major concern with integrating a pruning method to a
data stream classification model is the computational cost.

We consider the problem of ensemble pruning within the context of supervised
classification in data streams. Data stream D is a (possibly infinite) sequence
of time-ordered data that consists of pairs (X(t), y(t)) where t denotes the arrival
time. In classification, the target y(t) has L-many classes where L > 1. An
ensemble model ξ is a group of K component classifiers, i.e. ξ = {C1, C2, . . . , CK}

6



where the prediction of the model for an instance, H(x) , is a combination of
individual hypotheses (hk(x)) of its component classifiers where k denotes the
classifier index.

The aim of ensemble pruning is selecting a subset of classifiers ξ′ ⊂ ξ such that
the ensemble’s both efficiency and predictive performance are improved. Here,
let us denote the size of the pruned ensemble as |ξ′| = ϕ where ϕ < K. 2.1 gives
a summary of the symbols and notations used in this thesis.

Table 2.1: Symbols and Notation used in this thesis
Symbols Meaning

K Number of components in the original ensemble

N Size of the sliding window

L Number of classes in the target space

ϕ Number of components in the pruned ensemble

X Input attribute space.

x A data instance. x =< x1, x2, .., xi, .., xN >∈ X

ξ Original ensemble of components ξ = C1, C2, ..., CK

ξ′ Pruned ensemble where ξ′ ⊂ ξ and ϕ = |ξ′|

hk(x) Hypotheses of component Ck for an instance x

H(x) Hypotheses of the ensemble for an instance

7
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Figure 2.1: Stream data classification under concept drift. Feature-wise the same
input data instances are classified by the ensemble at 2 different time points.
Ensemble makes the same prediction for the input data; however, the prediction
is correct for time t, it is incorrect for time t+s. If this behaviour is consistent for
a time period, we can say that a concept drift occurred during the time interval
[t, t+ s]. Misprediction at time t+ s, shows that the learned information by the
components of the ensemble became obsolete.
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Chapter 3

Related Work

3.1 Ensemble Pruning Methods

Even though ensembles with an immense number of classifiers may increase the
generalization accuracy of the system, in real-world problems the memory and
time constraints may not comply with this approach. Empirical studies have
shown that even a fraction of the original ensemble can perform the same classifi-
cation task without a significant decrease in accuracy, in fact, they may increase
the accuracy [22, 26, 27, 28]. In [29, 30] it is theoretically proven that the ideal
ensemble size is equal to the number of target classes and throughout the experi-
ments, it is shown that the optimal ensemble size is closer to the number of target
classes than infinite. However, selecting a subset of classifiers that achieves the
best performance when combined is a computationally expensive process. For a
given performance measure, finding the optimal subset of classifiers has exponen-
tial complexity, dependent on the size of the original set of classifiers, since it
requires a combinatorial search through the classifiers.

In this section, we discuss some of the notable pruning approaches.

9



3.1.1 Ordering-based Pruning

In ordering based pruning methods, components are sorted by a defined criterion
metric and only the components that surpass a boundary are kept. In [21] they
show that with an appropriate metric, ensembles that are pruned based on the
ordering achieves minimum error with intermediate ϕ and generally they achieve
lower error rates compared to the original ensemble.

KL-divergence Pruning. This approach is proposed in [26] with three
other ordering-based pruning methods. In KL-divergence authors start with the
assumption that all of the components in the ensemble have similar error rates.
They use Kullback-Leibler Divergence [31] as a measure of diversity between two
components’ probability distribution. Let pi and pj be the probability distribu-
tions of Ci and Cj where Ci, Cj ∈ ξ; KL Divergence, D(pi||pj), is given by;

D(pi||pj) =
∑
x∈X

pi(x) log
pi(x)

pj(x)
. (3.1)

The goal is to find a subset ξ′ ∈ ξ such that, the sum of the pair-wise KL-
Divergence of the components, J(ξ′), is minimized.

J(ξ′) =
∑

Ci,Cj∈ξ′
D(pi||pj) (3.2)

Since finding the optimal subset is a computationally expensive problem, they
use a greedy algorithm. They start by adding the first created component in the
ξ′ and iterate through ξ \ ξ′ to find the Ci that achieves minimum J(ξ′) when
added. They repeat the process until ξ′ has ϕ components.

Kappa Pruning. This approach is also proposed in [26]. This time, they
consider the divergence of the classification decisions of the components. Kappa
statistic [32], κ, is used to measure the divergence of the component decisions.
For each Ci, Cj ∈ ξ, they create a matrix R with size L x L where Rlm denotes the

10



number of instances Ci predicted l while Cj predicted m. They define agreement
of two components Θ as;

Θ =

∑L
n=0Rnn

m
(3.3)

where m denotes the number of classified instances. Then, by calculating the
agreement of two components by chance, they determine the κ score. With this
approach κ = 0 denotes that the agreement of two classifiers is equal to the
agreement by chance and κ = 1 denotes that two components are identical based
on their predictions. They use a greedy algorithm to construct ξ′ by iterating
through all of the components in ξ.

In [25], the authors propose a reverse approach to Kappa pruning. They start
with ξ and iteratively remove components that are reducing the average κ score
of the ensemble. In [21], they improve Kappa pruning proposed in [26] by con-
sidering the Kappa scores of the components Ci ∈ ξ \ ξ′ with respect to the
components in ξ′ where \ denotes the set difference operator. Another improve-
ment on Kappa pruning is proposed in [26] which is called Kappa-Error Convex
Hull pruning. With this approach, they incorporate diversity and accuracy by
plotting the pair-wise kappa scores and the pairs average error which they call
Kappa-Error diagram. After the diagram is generated they apply Convex hull
and ξ′ is constructed by the components that appear on the pair-wise points on
the convex hull. With this approach they select components that are most accu-
rate and most diverse; however, the components selected by this approach does
not necessarily exhibit both of these features at the same time.

Reduce Error Pruning. This approach is first introduced in [33] as a deci-
sion tree pruning method, then [26] revised this method to apply in ensembles. In
this method ξ′ starts with the component that achieves the highest accuracy, then
it iteratively adds a component from ξ\ξ′ that estimates minimum generalization
error. They define their measure, Tu, for Cu as;

11



Tu =
∑

I(Hξ′∪Cu(x) = y) (3.4)

where Hξ′(x) denotes the hypothesis of the ξ′ if the component Cu is selected.
In [26], after ϕ components are selected, they apply a backfitting for a prede-
fined number of iterations to approximate even better-performing subensemble.
During backfitting phase, they replace a component Ci from ξ′ with Cj from the
eliminated components if the resulting ensembles estimated accuracy is higher
than the current ξ′. In later works backfitting phase is abandoned since it dra-
matically increases the execution time [24, 25, 34, 35]. Besides, it has been shown
that backfitting does not significantly reduce the generalization error of ξ′ [35]. In
a more recent study, Reverse Reduce Error (RRE) Pruning is proposed [36]. RRE
starts identical as Reduce Error Pruning but instead of applying backfitting, they
select the Worst Single Model (WSM) from ξ and subtract its prediction from
the prediction of ξ′ based on the assumption that WSM generally mispredicts.

Complementarity Measure Pruning. This approach is quite similar to
Reduced Error pruning and first proposed in [24]. This approach starts ξ′ with
the most accurate component from the ξ than iteratively adds a component from
ξ \ ξ that complements ξ′ the most. They define the complementariness measure
of component Cu, Tu, is defined as;

Tu =
∑

I(y = hu(x)andHξ′(x) 6= y) (3.5)

where Hξ′(x) denotes the hypothesis of the ξ′. At each iteration, the component
that achieves highest complementarity score is added to ξ′ until the size of ξ′

reaches to ϕ. The difference between this approach and the Reduce Error pruning
is that complementarity measure favors the components that lower the confidence
of the ξ′ when the hypothesis of the ensemble is incorrect.

Concurrency thinning [25] takes a similar approach, they iterate through ξ

and remove the component with the smallest complementarity measure that they
define. In concurrency thinning they reward component by increasing its score

12



by 2 if the hu(x) = y where Hξ(x) 6= y and if hu(x) = y where Hξ(x) = y the
component is rewarded by 1. Finally, component is penalized by decreasing its
score by 2 if hu(x) 6= y where Hξ(x) 6= y.

Margin Distance Minimization [24]. In this method, authors define a
signature vector ci for each Ci ∈ ξ where the dimension of the vector is equal
to the number of classified instances, V . If Ci correctly classifies instance t;
the related index of the Ci is equal to 1, otherwise -1. The performance of the
ensemble, c̄, is estimated by averaging signature vectors of all components in ξ.
If all of the instances are correctly classified then c̄ would be on the first quadrant
in V -dimensional space. The goal is to select ξ′ such that the distance between
c̄ and a selected target vector from the first quadrant of V -dimensional space is
minimized.

3.1.2 Clustering-based Pruning

In clustering-based Pruning methods, a clustering method is applied to the com-
ponents in the original ensemble in order to find a subset that is representative
of the original set and diverse. After clustering, components are selected with
different strategies.

In [37], authors use agglomerative clustering algorithm [38]. In the first phase,
in which they define the distance metric for a pair of clusters as the compound
error probability. After the clustering, from each cluster component that has the
maximum average distance from the other clusters is chosen in order to achieve
higher diversity.

k-means clustering is used in [39] by using the predictions of the components
as features. The optimal k is found by gradually increasing k until the diversity
(disagreement) between the cluster components starts to deteriorate. For the
optimal k diversity within clusters is low and more components can be pruned
from the clusters. In the component selection phase, for each cluster, components
are sorted according to their accuracy results on the training set. If a components’
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diversity from the most accurate component in the cluster is higher than the pre-
defined threshold, that component is removed from the ensemble. Also, if the
accuracy of the ensemble increases after removing a component, that component
is also pruned.

3.1.3 Optimization-based Pruning

In optimization-based pruning, selecting the subemsemble problem is approached
as an optimization problem by maximizing or minimizing the objective function.
Three main approaches are adopted for optimization-based pruning; heuristic,
mathematical programming and probabilistic pruning.

Heuristic optimization pruning first introduced by GASEN [40]. Weights are
assigned to each component which represents the component’s importance for
the ensemble. They start with randomly assigned weights and use a genetic
algorithm to obtain the optimal weights on a test dataset. After optimum weights
are assigned components with weights that are below a pre-defined threshold are
pruned from the ensemble. [34] used greedy hill climbing for ensemble selection
from a large set of models and [41] use collaborative web search based on the
similarity of search cases.

Mathematical programming optimization pruning has a better theoretical
foundation with respect to heuristic optimization pruning. [42] proposed us-
ing semi-defined programming to find a better approximate solution for ensemble
pruning problem. [43] considers the ensemble selection problem under regular-
ized framework and proposed and reduces the ensemble selection problem to a
quadratic problem.

3.1.4 Pruning in Data Streams

A related topic to on-the-fly ensemble pruning is Dynamic Ensemble Selection
(DES) [44]. In DES, a subset of components from a pool is selected for each test
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instance. DES assigns estimated levels of competence for each classifier in the
pool so that a selection method selects the classifiers to be assigned to incoming
instances. Note that, unlike ensemble pruning, selection of a subset of classifiers
for every instance does not reduce the size of the pool of classifiers.

Lastly, FIRE-DES++ [17] incorporates a pre-selection stage where only the
classifiers that can correctly classify at least a pair of instances with different
classes can proceed to the next stage of classification. Again, the pre-selection
stage in FIRE-DES++ does not change the size of the pool of classifiers.
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Chapter 4

Proposed Methods

Here we propose; class-wise component ranking-based and cover coefficient-based
pruning methods for on-the-fly ensemble pruning for data stream classification.
Both methods can be integrated to work with both dynamic and static multi-
class ensembles to improve the performance and memory consumption and can
be performed at any point in time on the stream.

First we introduce the notations used. Let classifiers in the original ensemble,
ξ, be {C1, C2, ..., CK}. Let L be the set of all possible target classes where L =

{l1, l2, .., lL}. y denotes the ground truth of the instances in the sliding window
where yn denotes the ground truth class of the nth instance in the sliding window.
Here, ŷk,n denotes the predicted classes by the Ck for the last nth instances i.e.
ŷk,n = hk(xn). Let ρ̂k,l be the record of the prediction of kth component for the
lth class on a sliding window containing the latest N instances. Similarly, let
ρl be the record of the ground truth information for the lth class on the sliding
window.

The aim of ensemble pruning is selecting a subset of classifiers ξ′ ⊂ ξ such that
the ensemble’s both efficiency and predictive performance are improved. Here,
let us denote the size of the pruned ensemble as |ξ′| = ϕ where ϕ < K.
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4.1 Class-wise Component Ranking-based Pruner

We introduce, CCRP, Class-wise Component Ranking-based Pruner for multi-
class online ensembles. The proposed method consists of three phases: Prelimi-

nary Phase : Recording Component Predictions on the Sliding Window, Phase

I : On-the-Fly Performance Analysis and Class-wise Ranking of Components, and
Phase II : Fusion of Rankings and Component Selection (see Figure 4.1).

Preliminary Phase: Recording Component Predictions on the Sliding

Window

This phase only applies to the ensembles that are not already recording the com-
ponent predictions on the sliding window (e.g. OzaBagging [45]). In this phase,
for the latest N data instances, predictions of classifiers and the ground truth are
recorded as ρ and ρ̂ respectively (Alg.1 line 4). Since only the latest N instances
are kept in the records, the required memory for this process is fixed, despite
being proportional to the number of classes.

Phase I: On-the-Fly Performance Analysis and Class-wise Ranking of

Components

This is the initial phase of CCRP in which per class performances of classifiers
are measured. In this phase, for each class l, predictions of classifiers and the
ground truth are extracted as ρl and ρ̂k,l respectively (Alg.1 line 7). Then, scores
of classifiers are calculated using Mean Square Error (Eqn. 4.1) for each class
(Alg.1 line 11).

Lk,l(X) =
N∑
i=1

(
ρ̂
(i)
k,l − ρ

(i)
l

)2
, 1 ≤ k ≤ K, 1 ≤ l ≤ L (4.1)
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Phase II: Fusion of Rankings and Component Selection

In the final phase, CCRP generates the overall ranking of the classifiers, using
a modified version Borda Count [46] rank fusion method (Alg.1 line 15). In
Modified Borda Count (MBC, hereafter), CCRP assigns K × L points (instead
of K points in the regular Borda Count [46]) to the highest ranking components
in the class-wise rankings. This ensures the winning component for each class
to appear at the top L places in the overall ranking. Afterwards, the second
classifier gets K − 1 points and each proceeding classifier gets 1 point less than
its successor. Then, the top ϕ classifiers from the overall ranking are selected as
the members of the pruned ensemble. It is recommended [29] that the pruned
ensemble size should be at least equal to the number of classes. Taking this into
account, CCRP guarantees that the best performing classifier for each class is
included in the pruned ensemble when ϕ ≥ L.
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Algorithm 1 CCRP: Class-wise Component Ranking-based Pruner
Require: D: data stream, ξ: ensemble, ϕ: pruned ensemble size
Ensure: ξ′: pruned ensemble
1: Initialize ρ as an empty FIFO buffer of size N .
2: Initialize ρ̂ as an empty FIFO buffer of size K ×N .
3: for (X, y) ∈ D do
4: ρ̂k. append(hk(X)) for ∀k { Preliminary Phase }
5: ρ. append(y)
6: { Start CCRP }
7: if prune then
8: { Phase I }
9: for l ∈ L do

10: for k ∈ K do
11: scores.append(MSE(ρl, ρ̂k,l)) { Class-wise MSEs }
12: end for
13: ranks[l] = argsort(scores) { Class-wise order of components }
14: end for
15: ccrp_ranks = ModifiedBorda(ranks) { Phase II }
16: ξ′ ← top ranked ϕ components based on ccrp_ranks
17: ξ ← ξ′ { Pruned ensemble in effect }
18: end if
19: end for
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Figure 4.1: Operational pipeline of Proposed Methods. Both CCRP and CCP have preliminary and pruning phases in
common. In Preliminary Phase, prediction history of each component in the ensemble are recorded. At each row
of records, colored cells indicate relevance scores for corresponding classes where darker shades indicate higher scores.
In CCRP, these records are used in calculating class-wise losses for each component, and class-wise rankings of those
components. The acquired rankings are combined using a rank fusion algorithm (Modified Borda Count). In CCP,
prediction histories are used to generate δ array. Colored instances in δ denotes the mispredicted instances. Decoupling
scores of components, σ, is then calculated using δ. Finally, during Pruning Phase, the resulting top ϕ components
(ϕ < K) are selected, and the rest is pruned.
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4.2 Cover Coefficient-based Pruner

We introduce, CCP, Cover Coefficient-based Pruner for online classification en-
sembles, which is inspired by [47]; a cover coefficient-based clustering method for
text clustering. CCP is ordered based pruning algorithm which can be catego-
rized under reduce error pruning algorithms. We take components mispredictions
into consideration and by using decoupling scores of each component and aim to
find a subset of classifiers who make misclassification errors on different instances.

Cover Coefficient Concept

Before starting to describe the application of Cover Coefficient (CC) concept in
our proposed method, it is important to introduce the CC concept as introduced
in [47]. The CC concept was introduced for document clustering in databases.
They define a document by term matrix where each row represents a document
and each column represents a term. For each term in the document, related
indices are set to 1 and the rest of the document row is set to 0. CC finds the
relationship between documents by performing a two-stage probability experiment
on the matrix and generate K by K CC matrix. In the CC matrix, each entry
represents the relationship between the related documents i.e. CCk,l denotes
coverage of kth document over lth document where k 6= l. In our case, our focus
is on the CCk,k which denotes the decoupling value of kth document from the
rest of the database.

Here, we adopt the CC concept to find the relationship between the com-
ponents of ensemble based on the mispredicted instances. Therefore, we can
distinguish components that make distinct errors so that the combined ensemble
can make more accurate predictions with fewer components. We define δ as K
by N matrix where each row represents a component and each column represents
an instance in the sliding window (Alg.2 line 10). δk,n denotes the misprediction
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of Ck at nth instance where;

δk,n =

{
1, if hk(xn) 6= yn

0, if hk(xn) = yn.

After construction of δ, the CC algorithm continues with two-stage probability
experiment which gives the probability of selecting the same mispredicted instance
from two components i.e. coverage of components one another. First of all, we
remove all-0 and all-1 columns from δ to simplify the calculations and save space
(Alg.2 lines 12 and 13). In order to calculate the coverage of Ck over Cl, we start
with Ck and look at the probability of selecting a randomly selected misclassified
instance of Ck from Cl. Finally, decoupling score of Ck, σk, is the probability of
selecting a randomly selected misclassified instance of Ck from Ck.

We give an example to clarify the two-stage probability experiment on a toy δ.
Consider the δ in Figure 4.2, where each 1 represent misclassification error i.e.
C4 misclassified the instances {n2, n4, n5} and correctly classified {n1, n3}.

δ =

n1 n2 n3 n4 n5


1 0 0 0 0 C1

0 0 0 0 0 C2

0 1 1 1 0 C3

0 1 0 1 1 C4

0 1 1 1 0 C5

Figure 4.2: Example δ matrix where each column represents a component from
the original ensemble, ξ, and each column represents a data instance in the last
data chunk.

We calculate the coverage of C4 over C3 by drawing a Bayesian Tree diagram
as given below. Each edge represents the probability of randomly selecting below
node from the above node. We start with C4; since C4 made 3 misclassifica-
tion errors, we draw 3 edges to misclassified instances {n2, n4, n5} each of which
having probability 1/3 of randomly being selected. We continue with randomly
selecting components that misclassified the given instance. The only component
that misclassified n5 is C4 so the probability that we randomly select C4 over the
components that misclassified n5 is 1/1.
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Figure 4.3: Bayesian Tree diagram for CC4,3 where the routes to be followed are
marked.

We calculate the coverage of C4 over C3, CC4,3, by following all of the paths
that starts with C4 and ends with C3.

CC4,3 =
1

3
∗ 1

3
+

1

3
∗ 1

3
= 0.22

In CCP, we only consider the decoupling scores of the components, since they
indicate the uniqueness of the components’ misclassification errors. For the de-
coupling scores, we follow the same routine but this time we follow the paths
which end with the initial component. Figure 4.2 shows the Bayesian Tree dia-
gram for the decoupling value of component C4 i.e. σ4.

C4

n2

C3 C4 C5

n4

C3 C4 C5

n5

C4

1/3
1/3

1/3 1/3

1/3

1/3 1/3 1/11/3 1/3

C4

C4 C4 C4

n2 n4 n5

Figure 4.4: Bayesian Tree diagram for σ4 where the routes to be followed are
marked.

CC4,4 = σ4 =
1

3
∗ 1

3
+

1

3
∗ 1

3
+

1

3
∗ 1

1
= 0.56
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If a component correctly classified all of the instances, CC values of that com-
ponent become 0. However, in ensemble pruning, we would like to give such
components higher scores so that we guarantee a spot in the pruned ensemble.
For that reason, we assign 1 for the decoupling scores of the perfect components.

Let us assume that we would like to prune this toy example with 5 components
where ϕ = 3. After generating δ, we calculate each component’s decoupling
values.

σ1 = 1

σ2 = 1

σ3 = 0.388

σ4 = 0.611

σ5 = 0.388

Finally, we select ϕ components with highest decoupling scores i.e.
{C1, C2, C4}. For the pruned ensemble ξ′, δ is given in Figure 4.2 and it can
be seen in the resulting ensemble components do not make misclassification error
on the same instances.

δ =

n1 n2 n3 n4 n5[ ]1 0 0 0 0 C1

0 0 0 0 0 C2

0 1 0 1 1 C4

Figure 4.5: σ for the pruned ensemble ξ′ where each column represents a com-
ponent from the pruned ensemble and each column represents a data instance in
the last data chunk.
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Algorithm 2 CCP: Cover Coefficient-based Pruner
Require: D: data stream, ξ: ensemble, ϕ: pruned ensemble size
Ensure: ξ′: pruned ensemble
1: Initialize ρ as an empty FIFO buffer of size N .
2: Initialize ρ̂ as an empty FIFO buffer of size K ×N .
3: for (X, y) ∈ D do
4: ρ̂k. append (hk(X)) for ∀k { Preliminary Phase }
5: ρ. append (y)
6: if prune then
7: { Generate δ }
8: Initialize δ as a zero filled array of size K x N
9: for k ∈ K do

10: δk[ρ̂k 6= ρ] = 1
11: end for
12: Remove all-0 and all-1 columns from δ
13: Initialize σ as zero filled array of size K
14: { Calculate decoupling scores }
15: sumr = sum(δ, axis = 0) { Row-wise sum of δ }
16: sumc = sum(δ, axis = 1) { Column-wise sum of δ }
17: for k ∈ K do
18: mp_instances = nonzero(δk)
19: for n ∈ mp_instances do
20: σk+ = (1/sumr[k]) ∗ (1/(sumc[n])
21: end for
22: end for
23: { Ranking and selecting the components }
24: ccp_ranks = argsort(σ)
25: ξ′ ← top ranked ϕ components based on ccp_ranks
26: ξ ← ξ′ { Pruned ensemble in effect }
27: end if
28: end for
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Chapter 5

Experiments and Results

5.1 Experimental Design

The proposed method and modifications to existing ensembles are integrated
into scikit-multiflow [48] library. The experiments are evaluated prequentially
[49]. We report prequential and overall accuracy as performance metrics as well
as average memory consumption and execution time.

Throughout the experiments, we use two typical dynamic ensembles (AWE
[15] and GOOWE [13]) with Hoeffding Trees [50] as their base classifiers. The
models are run on three real-world and three synthetic well-known datasets with
concept drifts [51, 52]. A summary of the dataset information is provided in Table
5.1.

All experiments are conducted on a machine with a 2.9 GHz dual-core Intel
Core i5 processor and 8GB of 1866 MHz LPDDR3 RAM.
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Table 5.1: Summary of datasets used in the experiments

Name # Features # Classes # Instances

Real

COVTYPE 54 7 581,012

Poker Hand 10 10 829,201

Rialto 27 10 82,250

Synth

Moving Squares 2 4 200,000

Moving RBF 10 5 200,000

Rotating Hyperplane 10 2 200,000

For memory consumption analysis in the experiments, we defineMean Memory
Consumption Ratio (µ) which indicates the percentage of average memory the
pruned ensemble uses with respect to the original ensemble (Eqn. 5.1 ).

µ =

∑
∀chunk Size(ξ′)∑
∀chunk Size(ξ)

(5.1)

In order to measure the statistical significance amongst the methods, we use
the Friedman test with Nemenyi post-hoc analysis [53]. During statistical signifi-
cance testing, we compare 3 methods; either AWE or GOOWE and their pruning
versions with CCRP and CCP. For Friedman test [54], we choose α = 0.05 where
the null hypothesis holds, if all measurements are from the same distribution i.e.
Xr2 (Eq. 5.2 ) is greater than selected critical value using α. If we reject the null
hypothesis for Friedman test, Nemenyi post analysis is applied to compare the
significance of the methods where Critical Distance, CD, is calculated according
to Eq. 5.3.

Xr2 =
12

Dm(m+ 1)

∑
R2 − 3D(m+ 1) where R is sum of rankings for a model

(5.2)
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CD = qα,m

√
m(m+ 1)

6|D|
(5.3)

For our experiments, CD is calculated as 1.353 with D = 6, m = 3 and
qα,m = 2.344.

5.2 Experimental Results

5.2.1 Effect of CCRP and CCP on Predictive Performance,

Memory Consumption and Execution Time

These experiments demonstrate the effect of pruning on predictive performance,
memory efficiency and execution time. Throughout these experiments, pruning
is performed whenever the ensembles are full, i.e. when the ensemble size reaches
K. After pruning, the ensembles continue to grow until they reach the maximum
size K, where pruning takes place again. This process continues indefinitely. We
perform experiments with AWE and GOOWE where K = 30 to investigate the
effect of CCRP and CCP on the ensembles.

Since right up to the first pruning the components in the ensemble are same for
both original method and the method integrated with pruning, we first investigate
the change in behavior of the ensemble after the first pruning takes place. Figures
5.1 and 5.2 shows the effect of initial pruning on both real and synthetic dataset.
By examining the figures, we can say that pruned ensembles’ overall performance
is better than the original ensemble for both of the pruning methods. By looking
at the plots of AWE on Moving Squares dataset, it can be observed that CCP
is more robust than CCRP based on the steep decrease in accuracy with CCRP
between 3000th and 4000th instances.

Table 5.2, shows the effect of CCRP and CCP on the predictive performance
of AWE and GOOWE. When we perform the Friedman test for accuracy results
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(Eq. 5.2), we see that pruning does not hurt accuracy, for both pruning methods.

Table 5.3 shows the memory consumption ratio of pruning methods for the
same experiment. Notice that CCRP uses at most 84% and at least 23% less
memory where CCP reduces memory consumption by at most 90% and at least
21%. Figures 5.3 and 5.4 presents the results of Nemenyi post hoc analysis
for memory consumption. While Nemenyi post hoc analysis shows no statistical
significance for CCP with AWE and CCRP with GOOWE, at least 21% reduction
on memory consumption is still notable for data stream classification.

Execution time ratios of pruning methods over original classification methods
are given in Table 5.4. Pruning methods can reduce the execution time by up
to 49%. For AWE, both pruning methods statistically significantly reduce the
execution time (See Figure 5.2.1). Although, Nemenyi test shows there is no
statistical difference in the execution time between GOOWE and GOOWE with
CCRP, it should be noted that CCRP reduces the execution time at least by
32%.
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Figure 5.1: The impact of CCRP (ϕ = L) on the prequential accuracy over one
real and one artificial dataset. Orange lines with triangles represent the CCRP
applied models and blue lines with squares represents the models without CCRP.
The first occurence of pruning is denoted with red vertical line which is labeled
tprune.
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AWE (Wang, 2003) GOOWE (Bonab & Can, 2018)
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Figure 5.2: The impact of CCP (ϕ = L) on the prequential accuracy over one
real and one artificial dataset. Orange lines with triangles represent the CCP
applied models and blue lines with squares represents the models without CCP.
The first occurence of pruning is denoted with red vertical line which is labeled
tprune.
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Table 5.2: Predictive Performance

AWE GOOWE

Original CCRP CCP Original CCRP CCP

COVTYPE 0.538 0.536 0.531 0.830 0.805 0.803

Poker Hand 0.542 0.608 0.549 0.688 0.672 0.671

Rialto 0.490 0.492 0.495 0.423 0.418 0.426

Moving Squares 0.782 0.767 0.778 0.639 0.692 0.716

Moving RBF 0.532 0.536 0.535 0.531 0.523 0.526

Rotating Hyperplane 0.893 0.890 0.888 0.884 0.889 0.886

Avg. Rank 2 1.834 2.167 1.667 2 2.334
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Table 5.3: Mean Memory Consumption Ratio, µ, (Eqn. 5.1) of Pruning Methods
(See Table A.1)

AWE GOOWE

CCRP CCP CCRP CCP

COVTYPE 0.69 0.65 0.16 0.10

Poker Hand 0.69 0.79 0.45 0.32

Rialto 0.77 0.78 0.53 0.58

Moving Squares 0.50 0.51 0.47 0.44

Moving RBF 0.44 0.50 0.35 0.21

Rotating Hyperplane 0.62 0.68 0.34 0.24

Figure 5.3: Critical distance diagram of average memory consumption of original
AWE, AWE with CCRP and CCP (See Table A.1).
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Figure 5.4: Critical distance diagram of average memory consumption of original
GOOWE, GOOWE with CCRP and CCP (See Table A.1).

Table 5.4: Execution Time Ratio of Pruning Methods with Respect to Original
Ensemble (See Table A.2)

AWE GOOWE

CCRP CCP CCRP CCP

COVTYPE 0.70 0.61 0.70 0.68

Poker Hand 0.57 0.54 0.87 0.61

Rialto 0.72 0.76 0.65 0.64

Moving Squares 0.60 0.61 0.56 0.57

Moving RBF 0.63 0.66 0.61 0.61

Rotating Hyperplane 0.61 0.60 0.53 0.51

Figure 5.5: Critical distance diagram of execution time of original AWE, AWE
with CCRP and CCP (See Table A.2).
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Figure 5.6: Critical distance diagram of execution time of original GOOWE,
GOOWE with CCRP and CCP (See Table A.2).

5.2.2 Effect of Pruning with Concept Drift Detection

On previous experiments, pruning was performed when the ensemble reaches its
maximum size (K = 30) which indicates a randomness. Here, we examine the
effect of pruning when performed after a concept drift is detected. As for concept
drift detection methods, we use ADWIN [55] and DDM [56]. Throughout the
experiments, concept drifts detected by ADWIN and DDM are fed to the models
with CCRP and CCP. Hence, we examined only the predictive performance of
the models.

It can be observed from Tables 5.5 and 5.6 pruning performs better with con-
cept drift detector. Even though Friedman Test shows no significant difference
with ADWIN, pruned ensembles achieve the highest accuracy for 8 out of 12 cases
and on par accuracy result for 1 case. Similarly pruned ensembles are better per-
forming with DDM where they achieve the highest accuracy for 9 cases.

When we compare the two pruning methods, CCRP is slightly better perform-
ing than CCP. CCRP performs better than original ensemble for 8 cases, where
CCP performs better on 7 cases with both ADWIN and DDM. Even though they
perform similar with ADWIN, CCRP achives accuracy results better than CCP
on 7 cases out of 12 with DDM.
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Table 5.5: Predictive performance of CCRP and CCP when ADWIN detect a
concept drift

AWE GOOWE

Original CCRP CCP Original CCRP CCP

COVTYPE 0.538 0.542 0.538 0.830 0.814 0.811

Poker Hand 0.542 0.543 0.542 0.688 0.676 0.677

Rialto 0.490 0.496 0.496 0.423 0.428 0.426

Moving Squares 0.782 0.772 0.782 0.639 0.699 0.714

Moving RBF 0.532 0.534 0.534 0.531 0.507 0.513

Rotating Hyperplane 0.893 0.894 0.894 0.884 0.892 0.892

Avg. Rank 2.58 1.58 1.83 1.91 2.25 1.83

5.2.3 Discussion

In Section 5.2.1 we show that pruning significantly reduces memory consumption
and execution time of the models without any statistically significant change in
predictive performance. Both CCRP and CCP perform relatively similar in case
of memory consumption and execution time.

Figures 5.2 and 5.1 shows that pruning increases predictive performance lo-
cally; however, when we look at the overall accuracy results there is no statistically
significant difference in the overall accuracy. This might be due to the nature of
batch-incremental base models; after each data chunk, ensembles are trained with
the data from the latest chunk. At first ensembles have younger classifiers which
are more susceptible to misclassification errors. Over time, classifiers within the
ensemble are trained with more data points and become better in their predic-
tions. Pruning the ensemble when ensemble reaches its maximum size, with its
randomness, might remove older and better-trained classifiers prematurely. Prun-
ing should be performed when the knowledge learned by the classifiers become
obsolete. In Section 5.2.2 we show that models integrated with pruning achieve
better accuracy results with concept drift detection compared to when pruning
is done when the ensemble reaches maximum size.
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Table 5.6: Predictive performance of CCRP and CCP when DDM detect a con-
cept drift

AWE GOOWE

Original CCRP CCP Original CCRP CCP

COVTYPE 0.538 0.540 0.539 0.830 0.825 0.850

Poker Hand 0.542 0.543 0.546 0.688 0.693 0.691

Rialto 0.490 0.498 0.494 0.423 0.461 0.388

Moving Squares 0.782 0.777 0.776 0.639 0.652 0.657

Moving RBF 0.532 0.534 0.533 0.531 0.501 0.510

Rotating Hyperplane 0.893 0.894 0.893 0.884 0.883 0.883

Avg. Rank 2.33 1.33 2.33 2 1.75 2.25
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Chapter 6

Conclusion and Future Work

Data stream classification demands strict time and memory constraints, due to
the huge amount of data and robust classifiers, in order to adapt the changes in
the distribution of data over time. We propose two ensemble pruning methods for
ensemble classifiers on data streams. Our first proposed method, CCRP, is a class
imbalance-aware pruning method where pruned ensemble does not lose its ability
to classify rare or less-frequent classes. For each target class in the latest data
chunk, classifiers are ranked based on their predictive performance for that target
class. The final ranking of classifiers is obtained by a rank fusion algorithm that
guarantees that the best performing classifiers for each class to be in the selected
ensemble. Our second proposed method, CCP, is a misclassified instances aware
method which uses the Cover Coefficient concept to find the relations between
classifiers based on their misclassification errors. With the Cover Coefficients, it
identifies classifiers that make mispredictions on different data instances hence,
selected classifiers can cover up each other’s misclassification errors. In our exper-
iments, we show that pruned ensembles significantly reduces time and memory
consumption of the model without hurting the predictive performance. CCRP
can reduce memory consumption up to 84% and execution time up to 47%, where
CCP can reduce memory consumption up to 90% and execution time up to 49%
without no statistically significant changes in the predictive performance of the
models.
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CCRP ranks the classifiers for each target classes that appeared in the latest
data chunk. For future work, CCRP can be extended to keep the best performing
classifier for each target class in each data chunk. with this approach, CCRP can
select the best performing classifier for all target classes, even if a target class
does not appear in the latest data chunk.

CCP uses decoupling values of classifiers based on their misclassified instances
for the latest data chunk; however, two components with identical misclassifi-
cation errors would have the same decoupling scores. Given the case that, the
decoupling scores of these two classifiers are low enough to be chosen for the
pruned ensemble, they both be included in the pruned ensemble. Such a case
might cause the pruned ensemble to be more inclined to repeat the same mis-
classification errors in the future. As an additional future work, CCP can be
improved to select components for pruned ensemble iteratively, while consider-
ing the coupling scores of the candidate components with respect to the already
selected components.

As a final remark, integrating the main ideas of the two proposed would result
in a pruner which is both class imbalance and misclassified instances aware. The
best performing component for each class would be added to the pruned ensemble
first, then the remaining slots can be filled according to CCP algorithm.
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Appendix A

Detailed Experimental Results for

Memory Consumption and

Execution Time
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Table A.1: Memory Consumption (kB)

AWE GOOWE

Original CCRP CCP Original CCRP CCP

COVTYPE 3167.820 2205.370 2084.638 31449.462 5162.183 3130.679

Poker Hand 661.357 461.147 528.817 2210.549 1012.498 713.115

Rialto 3986.451 3095.580 3142.942 5330.678 2871.927 3118.233

Moving Squares 217.957 538.432 610.326 1104.829 520.076 489.205

Moving RBF 919.682 576.801 630.201 3125.348 1104.554 641.015

Rotating Hyperplane 582.347 356.535 395.304 10652.474 3720.235 2565.072

Avg. Rank 2.58 1.58 1.83 1.91 2.25 1.83
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Table A.2: Execution time (s)

AWE GOOWE

Original CCRP CCP Original CCRP CCP

COVTYPE 25183.583 17741.878 15377.431 34192.013 24049.263 23277.075

Poker Hand 9492.621 5424.541 5135.0391 12929.893 11257.176 7942.315

Rialto 5308.762 3871.741 4085.281 4834.361 3175.908 3108.973

Moving Squares 863.595 519.228 529.864 680.195 377.754 384.502

Moving RBF 3028.056 1929.770 1999.609 3054.585 2509.122 1855.346

Rotating Hyperplane 1467.627 909.371 883.543 1554.398 829.035 792.314

Avg. Rank 2 1.834 2.167 1.667 2 2.334
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