Multifunctional integrated photonic switches

Date

2005

Authors

Demir, H. M.
Sabnis, V. A.
Fidaner, O.
Zheng, J.-F.
Harris, J. S.
Miller, D. A. B.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
24
downloads

Series

Abstract

Traditional optical-electronic-optical (o-e-o) conversion in today’s optical networks requires cascading separately packaged electronic and optoelectronic chips and propagating high-speed electrical signals through and between these discrete modules. This increases the packaging and component costs, size, power consumption, and heat dissipation. As a remedy, we introduce a novel, chip-scale photonic switching architecture that operates by confining high-speed electrical signals in a compact optoelectronic chip and provides multiple network functions on such a single chip. This new technology features low optical and electrical power consumption, small installation space, high-speed operation, two-dimensional scalability, and remote electrical configurability. In this paper, we present both theoretical and experimental discussion of our monolithically integrated photonic switches that incorporate quantum-well waveguide modulators directly driven by on-chip surface-illuminated photodetectors. These switches can be conveniently arrayed two-dimensionally on a single chip to realize a number of network functions. Of those, we have experimentally demonstrated arbitrary wavelength conversion across 45 nm and dual-wavelength broadcasting over 20 nm, both spanning the telecommunication center band (1530–1565 nm) at switching speeds up to 2.5 Gb/s. Our theoretical calculations predict the capability of achieving optical switching at rates in excess of 10 Gb/s using milliwatt-level optical and electrical switching powers.

Source Title

IEEE Journal on Selected Topics in Quantum Electronics

Publisher

Institute of Electrical and Electronics Engineers

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English