• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Reducing communication volume overhead in large-scale parallel SpGEMM

      Thumbnail
      Embargo Lift Date: 2019-12-29
      View / Download
      782.6 Kb
      Author
      Ünsal, Başak
      Advisor
      Aykanat, Cevdet
      Date
      2016-12
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      116
      views
      18
      downloads
      Abstract
      Sparse matrix-matrix multiplication of the form of C = A x B, C = A x A and C = A x AT is a key operation in various domains and is characterized with high complexity and runtime overhead. There exist models for parallelizing this operation in distributed memory architectures such as outer-product (OP), inner-product (IP), row-by-row-product (RRP) and column-by-column-product (CCP). We focus on row-by-row-product due to its convincing performance, row preprocessing overhead and no symbolic multiplication requirement. The paral- lelization via row-by-row-product model can be achieved using bipartite graphs or hypergraphs. For an efficient parallelization, we can consider multiple volume- based metrics to be reduced such as total volume, maximum volume, etc. Existing approaches for RRP model do not encapsulate multiple volume-based metrics. In this thesis, we propose a two-phase approach to reduce multiple volume- based cost metrics. In the first phase, total volume is reduced with a bipartite graph model. In the second phase, we reduce maximum volume while trying to keep the increase in total volume as small as possible. Our experiments show that the proposed approach is effective at reducing multiple volume-based metrics for different forms of SpGEMM operations.
      Keywords
      Parallel computing
      Combinatorial scientific computing
      Partitioning
      Sparse matrices
      Sparse operations
      Sparse matrix matrix multiplication
      Permalink
      http://hdl.handle.net/11693/32596
      Collections
      • Dept. of Computer Engineering - Master's degree 508
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy