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December 2016

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Cevdet Aykanat(Advisor)

M. Mustafa Özdal
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ABSTRACT

REDUCING COMMUNICATION VOLUME
OVERHEAD IN LARGE-SCALE PARALLEL SPGEMM

Başak Ünsal

M.S. in Computer Engineering

Advisor: Cevdet Aykanat

December 2016

Sparse matrix-matrix multiplication of the form of C = A × B, C = A × A

and C = A × AT is a key operation in various domains and is characterized

with high complexity and runtime overhead. There exist models for parallelizing

this operation in distributed memory architectures such as outer-product (OP),

inner-product (IP), row-by-row-product (RRP) and column-by-column-product

(CCP). We focus on row-by-row-product due to its convincing performance, row

preprocessing overhead and no symbolic multiplication requirement. The paral-

lelization via row-by-row-product model can be achieved using bipartite graphs

or hypergraphs. For an efficient parallelization, we can consider multiple volume-

based metrics to be reduced such as total volume, maximum volume, etc. Existing

approaches for RRP model do not encapsulate multiple volume-based metrics.

In this thesis, we propose a two-phase approach to reduce multiple volume-

based cost metrics. In the first phase, total volume is reduced with a bipartite

graph model. In the second phase, we reduce maximum volume while trying to

keep the increase in total volume as small as possible. Our experiments show that

the proposed approach is effective at reducing multiple volume-based metrics for

different forms of SpGEMM operations.

Keywords: Parallel computing, combinatorial scientific computing, partitioning,

sparse matrices, sparse operations, sparse matrix matrix multiplication.
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ÖZET

BÜYÜK ÖLÇEKLİ PARALEL SYGEMM’DE İLETİŞİM
HACMİNİ DÜŞURME

Başak Ünsal

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Cevdet Aykanat

Aralık 2016

Seyrek matris-matris çarpımları (SyGEMM) bir çok alanda en sık kullanılan

operasyonlardan biridir. Bu işlemler genel olarak karmaşık ve uzun çalışma

sürelerine ne sahiptir. Dağıtık bellek sistemlerinde bu işlemleri parallelleştirmek

için bir çok yöntem mevcuttur. Bunlar: dış çarpım, iç çarpım, satır-satır çarpım

ve sütün-sütün çarpımdır. Bu tezde, düşük önhazırlık, iyi performans ve sembo-

lik çarpma gerektirmemesi gibi bir çok getirisinden dolayı satır-satır çarpımına

yoğunlaşılmıştır. Satır-satır çarpımının paralelleştirilmesinde iki-kümeli çizgeler

ve hiper çizgeler kullanılabilmektedir.

Daha verimli bir paralleştirme için, toplam hacim ve en yüksek hacim gibi

bir çok hacim odaklı ölçüt dikkate alınabilir. Satır-satır çarpımlar için var olan

yöntemler, bir çok hacim odaklı ölçütü aynı anda gerçekleştirmekte başarısız ol-

maktadırlar.

Bu tezde, bir çok hacim odaklı ölçütü aynı anda düşürmek için iki aşamalı

bir yöntem önerdik. İlk aşamada, toplam hacim iki kümeli çizge kullanılarak

düşürülmüştür. İkinci aşamada ise toplam hacimdeki artışı en azda tutmaya

çalışarak en yüksek hacimi düşürdük.

Deneylerimizde görülebilmektedir ki, önerdiğimiz yöntem çeşitli SyGEMM

işlemleri için bir çok hacim odaklı ölçeği aynı anda düşürmüştür.

Anahtar sözcükler : Paralel işlemler, kombinasyonal bilimsel uygulamalar, seyrek

matrisler, seyrek işlemler, seyrek matris matris çarpımları .
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Chapter 1

Introduction

Sparse matrix-matrix multiplication (SpGEMM) in the form of C = A × B,

C = A × A and C = A × AT is a kernel operation for many scientific applica-

tions. It may arise in linear programming [1], molecular dynamics [2] [3], breadth-

first search [4], triangle counting in graphs [5] and recommendation systems [6].

Data used in those applications generally contain large sparse matrices and often

computations on those matrices constitute computational bottlenecks. Hence,

SpGEMM operations are parallelized to avoid long computation time. There

exit different partitioning schemes for parallel SpGEMM; outer-product (OP),

inner-product (IP), row-by-row-product (RRP) and column-by-column-product

(CCP). Among these, RRP exhibits better parallelization performance due to the

lower preprocessing overhead and requiring no symbolic multiplications. Those

properties and advantages make RRP attractive compared to other models for

parallelizing SpGEMM on distributed architectures.

In row-by-row-product parallelization, rows of A and rows of B are partitioned

into K parts. After partitioning, an atomic task corresponds to multiplication of

each nonzero in a row of A with the corresponding rows of B. This multiplication

refers to computation task of the processor Pk that holds respective row of A. To

perform the computational tasks, the needed data should be transferred between

processors, which necessitate communication tasks. Thus, partitioning into K
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parts requires distributing communication and computational tasks among K

processors. Distributing communication tasks leads to an optimization problem

related to minimizing amount of volume of data sent over processors, including

total communication volume and maximum communication volume.

For RRP models, in the literature, there exist graph and hypergraph models in

which rows represent vertices and nonzeros represent edges or hyperedges. These

models aim to minimize volume-based metrics. Graphs used for RRP model are

bipartite graphs. The existing bipartite graph model [7] fails to minimize multiple

volume metrics at the same time and it fails to provide balanced communication

tasks if the number of nonzeros in the rows has high variance,

This thesis introduces a two-phase bipartite graph model to reduce total and

maximum volume sent over processors. In the first phase, total volume is mini-

mized using bipartite graph model. In the second phase, the proposed bipartite

model decreases the maximum communication volume while trying to keep the

increase in total volume as small as possible. In other words, second phase tries

to balance the communication loads of the processors. The proposed model in

the second phase is orthogonal to the partitioning model used in the first phase.

In other words, it can work with any readily partitioned instance.

Our comprehensive experiments demonstrate that our model balances maxi-

mum communication volume as expected while keeping total volume found in the

first phase almost the same.
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Chapter 2

Related Work

There exist plenty of applications about optimizing matrix-matrix or matrix-

vector multiplication problem for shared memory [8] [9] and distributed memory

[10] [11] [12] [7] [13] architectures. Matrices used in those kernels can be large,

containing million number of rows or columns. There are plenty of important

volume-based cost metrics to consider for an efficient parallelization such as max-

imum volume sent by a processor, total volume, volume imbalance, total message

and maximum message sent or received. The approaches in the literature can

be categorized into two as one-phase or two-phase according to way they address

multiple communication cost metrics.

2.1 One-phase approaches

Recently, Deveci et al. [10] extended their early proposed algorithm called UMPa,

which only decrease maximum communication volume, to a multilevel hypergraph

partitioning tool that can handle multiple cost metrics such as total volume, max-

imum communication volume, total and maximum number of messages simulta-

neously. In this method, directed hypergraphs are used for modelling number

of messages received and sent from processors and maximum volume. In other
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words, UMPa is compared with tools such as PaToH, Mondriaan and Zoltan.

Comparisons are done with 128, 256, 512 and 1024 processors and a large num-

ber of example data sets show that UMPa obtains better results in terms of

multiple communication cost metrics. For example, comparisons with PaToH in-

dicate that, for 1024 processors, UMPa obtains 20% lower maximum number of

messages sent by a processor and 14% lower total number of messages.

Acer et al. [11] focused on a model for sparse matrix dense matrix multipli-

cation (SpMM) on distributed memory systems to decrease the cost of different

volume metrics. Applications that belong to linear algebra operations and big

data analysis utilizing SpMM causes high communication volume. The model

presented in this work uses two different structures: graphs and hypergraphs.

Using recursive bipartitioning in a single partitioning phase, their model tries

to optimize not only total volume but also maximum send and receive volume.

Experiments show that their graph model is 14.5 times faster than UMPa that ad-

dresses similar communication metrics. Besides running time, their graph model

also increases the quality of the partitions by 3% in terms of maximum volume.

Their hypergraph model has a higher improvement rate of 13% on partition qual-

ity and is also 3.4 times faster tham UMPa.

Recently, Slota et al. [14] presented a new partitioning tool called PuLP (Par-

titioning using Label Propagation) tailored for scale-free graph that arise in big

data. Parallelization is crucial in this area since input data is generally too com-

plex and consume considerable energy and execution time when it is applied in

distributed systems. Since label propagation algorithm, which is an example of

agglomerative clustering, takes less time and can be easily parallelized producing

results with acceptable quality. Besides satisfying partitioning constraints, PuLP

also tries to minimize multiple edge and volume costs at the same time. Accord-

ing to the experiments, PuLP outperforms METIS (which uses k-way multilevel

partitioning algorithm) in terms of total edge cut and maximal cut edges per

partition. Statistics shown in the paper indicate that PuLP consumes 8-39 times

less memory compared to its alternatives. It is also mentioned that, the execution

time of PuLP can be shorter than the state-of-art methods 14.5 times on average.
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Although some of the approaches in the literature achieve quite successful

partitioning results, there are some drawbacks using a single-phase approach.

First of all, those methods may need to sacrifice some of the metrics to optimize

others because it is difficult if not impossible to optimize multiple metrics at the

same time in a single phase.

2.2 Two-phase approaches

Akbudak et al. [7] proposed a hypergraph and a bipartite graph model for par-

allelization of outer-product, inner-product and row-by-row-product SpGEMM.

This method consists of two phases to minimize multiple communication cost

metrics. In the first phase, their approach creates a hypergraph or graph that is

also called computational models. Aim of this step is to reduce the total message

volume and balance the computational loads of the processors. Following this

step, the second phase constructs another hypergraph representing communica-

tion tasks to minimize the total message count and balance message volume loads

of the processors. According to the experiments in the paper, for the first phase,

bipartite graph is preferred to its hypergraph counterpart because of its low par-

titioning overhead and construction cost although its efficiency is insignificantly

low. Also in the experiments, they show that by decreasing latency and the band-

width costs using communication hypergraph, time required for SpGEMM can

be decreased up to 32%.

Similarly, Bisseling et al. [12] worked on finding proper partitioning for par-

allel matrix-vector multiplication. In their model, they assume that the sparse

matrix has already been partitioned and given as an input to the proposed ap-

proach. They apply their algorithms to find suitable partitions for input and

output vectors. A new lower bound is defined for maximum communication load

of processors. One of their algorithm, called Opt2, can find the optimal solution

which reach that predefined lower bound in a particular occurrence of the matrix

such that each column of the matrix can be partitioned into at most two proces-

sors in input vector. Additionally, there exists another heuristic called LB that
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is successful in finding good solutions in practice providing that it is followed by

a greedy algorithm.

In [13], Ucar et al. presented a solution to overcome the problem of partitioning

of unsymmetric square and rectangular sparse matrices thar are used in matrix-

vector multiplications. Although major part of the current partitioning models

try to minimize total message volume, total message latency is also important

metric to be considered. That is because sometimes start-up time required by a

message can be longer than sending another message in the same package. To

that end, they propose a two-phase methodology to minimize multiple communi-

cation costs. In the first phase, besides computational load balance, objective is

to reduce message volume using existing 1D partitioning models. The following

phase takes the result of the first phase as an input and creates a communication

hypergraph using relations between vertices and processors. This phase aims to

minimize total message volume and balance work load of processors using hyper-

graph partitioning. Results obtained from multiplication of parallel matrix-vector

and matrix-transpose-vector using Message Passing Interface (MPI) indicate that,

their model obtains considerable improvements over existing approaches.

It can be inferred that two-phase methods are more successful on optimizing

multiple communication metrics. However, for both one- and two-phase methods,

existing models fall short in the existence of communication tasks with non-

uniform sizes.
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Chapter 3

Background

3.1 Graph Partitioning

Standard graph model is represented as G = (V , E) where V represents the vertex

set and E represents the edge set. Vertex vi in the vertex set may be connected

to other vertex vj via edge eij. In this case, vj is called neighbor of vi. Adj(vi)

contains the set of neighbors of vi which can be denoted as

Adj(vi) = {vj : eij ∈ E}.

Both edge eij and vertex vi may be associated with a cost cij and wi respectively.

Π(G) = {V1, ...,VK} shows a K-way partition of the graph G where K is the

number of processors or partitions. Π(G) consists of K set of vertices where Vk

represents the vertex set which are assigned to part k. In the partition Π(G)

there can be two different types of edges, cut and uncut. If there exists an edge

eij between vi and vj that are assigned to different partitions, eij is called as a cut

edge. If the vertices vi and vj are in the same partition, eij is said to be uncut.

The total cutsize is given as ∑
eij∈EE

cij,

where EE ⊆ E indicates the set of edge cuts. Additionally, in Π(G), if a vertex
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vi have a cut edge, in other words, if the vertex have a connection with a vertex

vj that is in another partition, both vertex vi and vj are called boundary ver-

tices. Boundary vertices necessitate communication in the system which will be

specified as communication volume later in this section.

Sum of the weights of each vertex in Vk denotes the weight of the partition Vk

which is denoted as W (Vk). There exists a balance criteria for a partition,

W (Vk) ≤ Wavg(1 + ε), k ∈ {1, ..., K}

where ε is imbalance value defined beforehand and Wavg is the average of the

weights of the partitions, i.e.,
∑

k W
c
avg(Vk)/K.

3.2 Sparse Matrices

For the representation of the graph, matrices are commonly used because of ease

of computation and construction. According to the structure of the data to be

stored, matrix may be sparse or dense.

• Sparse matrix: Most of the data is zero.

• Dense matrix: Number of nonzeros is greater than the number of zero ones.

Since in sparse matrices, most of the data is zero, storing it in a two-

dimensional array structure is costly. Thus, there are couple of data structures

to represent sparse matrices efficiently. The three common ones are,

1. Coordinate format (COO) : All entries are stored in a list which is in (row,

column, value) format.

2. Compressed sparse row (CSR) : In this commonly preferred representation

technique, matrix is represented using three different lists:

8



(a) IA: starts with 0 and stores the cumulative number of nonzeros in each

row. List has (#ofrows)+1 elements and ends with the total number

of nonzero in the matrix.

(b) JA: stores the column value of each nonzero starting from the first

row. This array consist of total number of nonzeros.

(c) A: consist of the nonzero values of the entries starting from top-left

which is also have the same order as JA.

In case vertices or edges have weights, they can be stored in two different

additional lists.

It provides fast data access without searching for data as in COO. Example

3.1 shows how to construct CSR for an example matrix M.

M =


0 2 0 0

1 0 0 4

0 0 0 0

0 0 3 0


IA = [0 1 3 3 4]

JA = [1 0 3 2]

A = [2 1 4 3]

(3.1)

3. Compressed sparse column (CSC) : This representation is quite similar to

CSR. The only difference is that, columns are taken into account in IA

instead of rows. In other words, CSC works like reverse of CSR.

3.3 Parallelization of Sparse Matrix-Matrix

Multiplication

In scientific applications, one of the most common and crucial operations is sparse

matrix-matrix multiplication (SpGEMM). Since the matrices used in those ap-

plications may have large number of rows and columns and high complexity,

9



sequential execution leads long running time. Therefore, parallelization of the

multiplication becomes imperative. In the literature, there are four common

ways to parallelize SpGEEM: outer-product-parallel, inner-product-parallel, row-

by-row-product-parallel, column-by-column-product-parallel.

Taking C = A×B into account, these parallelization schemes work as follows:

1. Outer-product-parallel algorithm (OP): Columns of A and rows of B are

mapped to the processors. In the computation, the elements in the column

of A and the corresponding row of B are accessed once by the processors.

After this operation, partial results are produced which means outer prod-

ucts may contribute to the same element in the output matrix C. Thus,

elements of the C are needed to be accessed more than once.

2. Inner-product-parallel algorithm (IP): Rows of A and columns of B are

mapped to the processors. In the computation, each multiplication calcu-

lates the result of only one element in C. Therefore, the elements of the C

are accessed once by the responsible processor.

3. Row-by-row-product-parallel algorithm (RRP): Both A and B are parti-

tioned rowwise. Elements in the rows of B are multiplied by the rows of

A. Therefore, while nonzeros in the rows of A are used for computing once,

rows of B are accessed more than once.

4. Column-by-column-product-parallel algorithm (CCP): Both A and B are

partitioned columnwise. This algorithm works like reverse of the RRP.

In other words, columns of B are used for computing once, whereas, the

columns of A are accessed more than one. In both RRP and CCP, the

elements of output matrix of the C are accessed once by the responsible

processors.

As mentioned in previous sections, using RRP in parallelization of SPGEMM

is more effective than using OP and IP in terms of speed and partitioning per-

formance. Therefore, in this thesis, we focus on improving performance of RRP

model.
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3.3.1 RRP and Representation of SpGEMM

In RRP model, rows of A (ai∗) and B (bj∗) are mapped to the processors. The

main operation is the multiplication of each nonzero aij in ai∗ with all nonzero

elements in bj∗. The atomic task regarding ith row of A is defined as

{ai,jbj,∗ : j ∈ cols(ai,∗)}.

Data used in the atomic multiplication can be assigned to different processors.

Therefore, it may be needed to be sent over partitions. Transferring data in-

curs communication in the system. We can categorize the operations in RRP

SpGEMM as computational and communication tasks. Since every row of B is

multiplied by each nonzero in the corresponding row of A, the computational

tasks are defined on rows of A. Whereas, due to the fact that nonzeros in the

rows of B are needed to be sent for the computational tasks, the communication

tasks are defined on rows of B.

Bipartite graphs are specialized graphs that consist of disjoint sets of vertices.

They constitute a natural way to model sparse matrix-matrix multiplication.

Bipartite graph model only allows edges or connections between disjoint sets of

vertices. We use following notation to represent RRP SpGEMM as a bipartite

graph.

GRRP = {VAC
rr ∪ VB

r , EA
z }

In the existing bipartite graph model [7], number of rows of A and number of row

of B together give the number of vertices in GRRP . Each row of A is represented

as a vertex in VAC
rr and each row of B is represented as a vertex in VB

r set. The

number of edges in the graph is equal to the number of nonzeros in matrix A

because each nonzero in A signifies a dependency to a row B, that is captured

with an edge. An edge eij in edge set EA
z connects a vertex vi with a vertex vj.

{EA
z = eij : vi ∈ VAC

rr , vj ∈ VB
r }

Adjacency list of vi denotes the set of vertices are neighbor of vi. In SpGEMM, it

represents the rows of B that should be received by vi to perform multiplication.

Adj(vi) = {vj : j ∈ cols(ai,∗)}

11



Similarly, adjacency list of vj consist of the neighbors of vj. In other words,

Adjacency list of vj includes the computational tasks which need the respective

row of B for their computation.

Adj(vj) = {vi : i ∈ rows(a∗,j)}

In the bipartite graph model, there are also weights for both edges and vertices.

Weight of vertex vi is calculated as computational load of the multiplication which

can be also identified as the sum of number of nonzeros in each row of B that is

needed for multiplication with the respective row of A:

w(vi) =
∑

j∈cols(ai,∗)

#nonzero(bj,∗).

The vertices that belong to B do not have any weights because, they do not

represent any computation tasks.

In the graph model, there also exist edge weights. Each vertex vj determines

the cost of its edges. For instance, for vertices vi and vj, the cost of eij is assigned

as the number of nonzeros in vj. This is given by

c((vi, vj)) = c(eij) = cij = #nonzero(bj,∗).

Expression of the formulations is shown on the example graph in Figure 3.1. In

Figure 3.1, ai1,∗, . . . , ai4,∗ denote the computational tasks and arrows indicate the

data dependencies. For instance, in the graph, vertex ai1,∗ needs three different

rows bj1,∗, bj2,∗ and bj3,∗. Therefore, the processors that store these rows of B

should send them to the processor that stores ai1,∗ prior to multiplication.

Figure 3.2 is given as an example for matrices A and B and Figure 3.3 il-

lustrates the bipartite graph model that represents the SpGEMM operation

C = A × B. In the Figure 3.3, purple vertices represent rows of A whereas,

green ones represent rows of B. Numbers on the edges stand for the weights of

them. Similarly rectangular areas above the vertices indicate their weights.
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ai1,*

ai2,*

ai3,*

ai4,*

bj1,*

bj2,*

bj3,*

ai1,j1
ai3,j1

ai1,j2
ai2,j2

ai4,j2
ai1,j3

ai4,j3

Figure 3.1: Example data dependencies between rows of A and B.

A =



1 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 1



B =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
1 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0


Figure 3.2: Examples of A (8× 10) and B (10× 8) matrices.
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For the model, there also exist edge weights. Every vertex v

j

determines the

edge cost of its edges. For instance, for vertices v
i

and v

j

, cost of the e
ij

is assigned

as number of nonzero in v

j

. It can also be defined as

c((v
i

, v

j

)) = c(e
ij

) = c

ij

= #nonzero(b
j,⇤)

Expression of the formulations is shown on the example graph in 3.1. In the

figure, rows of A and B markes as purple. Arrows represents shared nonzero

between A and B.

An example matrix (3.2) and a graph (3.3) can be seen below. In the figure,

purple vertices represents rows of A whereas, green ones are rows of B. Numbers

on the edges shows the weights of them. Similarly rectangular areas on the

vertices indicates weights.

A =

2

66666666664

1 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 1

3

77777777775

, B =

2

666666666666664

1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
1 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0

3

777777777777775

Figure 3.2: Examples of A and B matrices
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Figure 3.4: A and B matrices after partitioning.

3.3.2 Partitioning of the Bipartite Graph

In the literature, there exist several tools for obtaining 1D partitioning on ma-

trices. Metis [15], Scotch [16] and PuLP [14] are the tools among common

ones. Using any of these partitioners, we can obtain a K-way partition as

Π = {V1, . . . ,VK}.

As can be seen in Figures 3.4 and 3.5, bipartite graph is partitioned into K = 4

parts. In the figure, partition 1 has a1 and b1, b2, partition 2 has a2, a3, a4, b3, b4,

partition 3 has a5, a6, b5, b6, b7, partition 4 has a7, a8, b8, b9, b10. In this graph,

computation and communication costs can be also inferred. Recall that a vertex

having an edge to a vertex in a different partition was called boundary vertex
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Figure 3.5: Bipartite model after partitioning
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such as a1, a2, a3, a5 and a7. Boundary vertices incur communication overhead

as much as their weights.

Since a1 requires b1, b2 and b3 to compute first row of C, processor 2 and pro-

cessor 3 needs to send b2 and b3 respectively. Because the number of nonzeros

defines weight of the vertices, which is also the amount of computation, compu-

tational load of a processor can be found as the sum of the weights of vertices in

that processor. For vertices of B, this weight is 0 because they do not signify any

computation. In this case of example graph, computational load of processor 3

is 4 + 2 + 0 + 0 + 0 = 4.

3.3.3 Partitioning with fixed vertices

In the problem of partitioning and repartitioning, fix vertices are commonly used.

Difference of this partitioning from the regular one is that there is constraint for

the part assignment of specific vertices. In this type of assignment, those specific

vertices, which are also called fixed vertices, have predefined partition values that

are specified before part assignment operation. For the set of the fixed vertices

which belongs to part VK is shown as FK for k = 1, . . . , K. Regular partitioning

step is applied to remaining free vertices which are denoted as V − {F1 ∪ F2 ∪
... ∪ FK}.
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Chapter 4

Proposed Method

In the scientific applications, the input matrices in SpGEMM may be related ac-

cording to the applications’ specific needs In other words, SpGEMM can represent

three different types of operations:

• C = A×B : represents the multiplication of two different sparse matrices

• C = A× A : represents the multiplication of matrix with itself

• C = A× AT : represents the multiplication of matrix with its transpose

where A and B are sparse matrices. Regardless of the type of the operation and

form of the matrices, bipartite graphs are used for modelling purpose. Different

types of the operation do not require any alteration in the model.

In this thesis, we propose a new two-phase approach to reduce maximum

volume and total volume. This two-phase approach also satisfies balanced com-

putational work load on processors for RRP SPGEMM. In the first phase, the

aim is to minimize the total communication volume. In the second phase, the

aim is to reduce the maximum volume while keeping the increase in total volume

found in the first phase as small as possible.
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4.1 First Phase

First phase consist of existing state-of-art RRP SPGEMM partitioning method as

described in previous sections. C = A×B is represented with a bipartite graph,

where rows of A and B are represented by the vertices and nonzeros needed for

rows of A constitute the edges. This graph shows computational dependencies

among row vertices. The aim of first phase is to reduce total volume of processors.

At the end of this phase, we obtain K-way partition Π1 for both rows of A and

B, denoted as

Π1 = {V1,V2, ...,VK}

In the first phase, we choose Metis to partition the graph due to its success in

reducing volume and balancing computational loads.

4.2 Second Phase

After reducing total volume in the first phase, the aim of the second phase is to

reduce maximum communication volume sent by a processor and hence balance

the communication loads of processors. This phase takes the result of the first

phase as an input and applies two different methods for satisfying objectives

mentioned above.

4.2.1 A Bipartite Graph Model for Balancing Volume

Loads

Generating the second phase bipartite graph follows similar steps with the one

in the first phase. Since the graph in this phase represents the communication

tasks, the aim of this phase is to reduce maximum communication volume of

the processors, we call this graph a communication graph (Vcomm). In the graph

model of this phase, there are two disjoint sets of vertices VB′ and VF :
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1. Boundary vertices (VB′): In the bipartite graph of the first phase, a vertex

bi in VB
r which has an outer edge is added to the set VB′ . That is because

only the vertices in VB
r participate in communication tasks.

VB′ = {bi : bi ∈ VB and bi is boundary}

2. Fixed vertices (VF ): Vertices in VF represent processors. Therefore, the

number of fixed vertices is equal to the number of processors. These vertices

do not have weights. Each fixed vertex fj has a predefined partition, which

is one of the processors.

VF = {fj : fj is a fixed vertex and 1 ≤ fj ≤ K}

Thus, the new vertex set can be denoted as:

Vcomm = {VB′ ∪ VF}.

Each edge eij connects a vertex bi in VB′ and a fixed vertex fj in VF . The

edge is formed if there is a connection between a vertex and a processor. In other

words, every boundary vertex has an edge between partition of its neighbors since

it incurs communication. It can be denoted as:

Ecomm = {eij : vi ∈ VB′ , vj ∈ VF , Adj(vi) ∩ Vj ̸= ∅}.

When all those formulations are combined in a graph, we have

Gcomm = {Vcomm, Ecomm}.
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Figure 4.1: Representation of boundary vertices and cut edges.
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Figure 4.2: Second phase bipartite graph.

In the Figure 4.1, the boundary vertices such as b1, b2, b3, b4, b6, b7, b10 are

marked as blue with the cut edges. For instance, for vertex b1, there are three

incoming edges: one is from partition 2, other is from partition 4 and the last

one is an internal edge. In this case, edges from a3 and a7 cause communication

from partition 1 to 2 and 1 to 4. On the other hand, b5 has two incoming edges

22



that are both from the same partition as b5. Thus, it is not added to the new

bipartite graph because there is no necessity for communicating b5.

Figure 4.2 shows the second phase bipartite graph model as an example. Circle

vertices represent the boundary vertices, triangle ones represent the fixed ones.

All relations are inferred from Figure 4.1. Edge weights are defined as the weights

of boundary vertices:

cij = c(eij) = #nonzero(vi).

Since fixed vertices do not incur communication, their weights are zero. Weights

of the vertices in VB′ are calculated as the sum of weights of outgoing edges.

4.2.2 A Bin Packing Heuristic for Distributing Commu-

nication Tasks

As a baseline method, we use a variant of bin packing algorithm. In this heuristic,

each processor is represented with a bin and each vertex is seen as an item to be

assigned to the bins.

Algorithm 1 displays the bin packing algorithm. This algorithm takes the

Gcomm as an input. In the first step, all vertices except the fixed ones are sorted

in descending order in terms of their weights. Starting from the vertex with the

highest weight, they are assigned to the bins (processors) with the current lowest

weight, which is one of the neighbors of that vertex (an illustration is given in

Figure 4.3 and 4.4). The reason behind this is not to increase the load of the

processor with the highest volume. This method also guarantees that no vertex

is assigned to the part that is not in its neighbor list. For example, In Figure 4.1,

vertex a2 is assigned to partition 2, however, all of its neighbors are in different

partitions (Partition 1 and 3). Since we are picking the processor to be assigned

in adjacency list of the vertex, for this phase, this bin packing heuristic avoids

from such cases.
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Data: Second phase bipartite graph Gcomm

Result: Partition vector of graph Gcomm

Sort vertices according to their weights in descending order;

while there exist an unassigned vertex vi do

Find Adj(vi);

Sort Adj(vi) in ascending order;

Assign vi to the processor pk ∈ Adj(vi) with the lowest total weight;

Update pk;

end
Algorithm 1: Bin packing algorithm.

P1 P2 P3 P4
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2
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3

b3b2 b4

b6

Sorted Order: b2

4

b3

4

b4 b6

4

b1 b5

2

b7

234

5th step:

4 4

4

4

Figure 4.3: Illustration of the bin packing algorithm.
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Figure 4.4: Result of the bin packing algorithm.

4.2.3 Partitioning the Second Phase Bipartite Graph

For reducing maximum volume, we apply partitioning to the second phase bipar-

tite graph.

Although bin packing heuristic guarantees to avoid assigning a vertex to the

part which is not in the adjacency list of it, it may still cause some misassignments.

For example, a vertex may have multiple neighbors in partition i, but, if there is

another empty bin, it may be assigned to it. In this case, satisfying objectives

may be failed. Using graph partitioning may provide more successful results in

such cases. In Figure 4.5 and in Table 4.1, status of the vertices and graph after

partitioning can be seen.

In this phase, it can be seen that only the placement of rows of B are changed.

Since total volume calculated in the first phase does depend on the rows of A,

after this phase, it is unlikely to increase since the partitioner will avoid making

out-of-part assignments in order to not to increase cutsize. The assigned vertices

are the boundary vertices of B and the partitioner is unlikely to assign vertices

to the processors to the processors that is not in its neighbor list. By this means,

total volume can be kept small and volume loads of the processors can be balanced

by maintaining a balance on the part weights in the graph. Recall that the total

messages of the vertices in a part corresponds to the send volume of the respective
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processor. By feeding the law, imbalance threshold to the underlying partitioner,

we can control the maximum volume and reduce it.
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Figure 4.5: Graph after second phase graph partitioning.
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Vertex in 1st phase 1st partition Vertex in 2nd phase 2nd partition

b1 1 b1 1

b2 1 b2 1

b3 2 b3 2

b4 2 b4 2

b5 3 - -

b6 3 b5 3

b7 3 b6 3

b8 4 - -

b9 4 - -

b10 4 b7 4

Table 4.1: Status of the vertices after each phase.
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Chapter 5

Experiments

Both bin packing and graph partitioning methods are tested on three forms of

SpGEMM

C = A×B,

C = A× A,

C = A× AT .

Approaches mentioned in Section 4 are applied on a large set of matrices

retrieved from matrix market of University of Florida [17]. Those matrices are

from real applications and also they are sparse. Names of the matrices used for

each operation can be seen below.

• C = A×B : amazon0302, amazon0312, thermomech dK

• C = A × A : 2cubes sphere, 598a, bfly, cca, cp2k-h2o-.5e7, cvxbqp1,

fe rotor, majorbasis, onera dual, tandem dual, torso2, wave.

• C = A × AT : cont11 l, fome13, fome21, fxm4 6, pds-30, pds-40, sgpf5y6,

watson 1, watson 2.

Properties of those input matrices are given in Table 5.1.

28



SpGEMM matrix rows columns # of nonzeros

C = A× AT

cont11 l 1468599 1961394 5382999
fome13 48568 97840 285056
fome21 67748 216350 465294
fxm4 6 22400 47185 265442
pds-30 49944 158489 340635
pds-40 66844 217531 466800
sgpf5y6 246077 312540 831976
watson 1 201155 286992 1055093
watson 2 352013 677224 1846391

C = A× A

2cubes sphere 101492 101492 1647264
598a 110971 110971 1483868
bfly 49152 49152 196608
cca 49152 49152 139264
cp2k-h2o-.5e 279936 279936 3816315
cvxbqp1 50000 50000 349968
fe rotor 99617 99617 1324862
majorbasis 160000 160000 1750416
onera dual 85567 85567 419201
tandem dual 94069 94069 460693
torso2 115967 115967 1033473
wave 156317 156317 2118662

C = A×B

amazon0302 (A) 262111 262111 1234877
amazon0302-user (B) 262111 50000 576413
amazon0312 (A) 400727 400727 3200440
amazon0312-user (B) 400727 50000 882813
thermomech dK (A) 204316 204316 2846228
thermomech dM (B) 204316 204316 1423116

Table 5.1: Properties of input matrices.

Graphs are partitioned into 256, 512 and 1024 parts. Many important com-

munication cost metrics are reported, which include:

• Total volume

• Maximum volume

• Volume imbalance

• Message count
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• Maximum number of messages

• Message count imbalance

Below, Tables 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11 show these statistics

for obtained partitions.

In the tables, there are two main sections: statistics for volume and message

count. Columns 3-6 display the results of volume statistics whereas columns 7-9

represent cost metrics for message count. Representations of those statistics in

the tables are: total (volume or message), maximum sent by a processor (Max.),

Imbalance (Imb.). Furthermore, Ph. in the second column stands for Phase, 1st

for 1st phase, BP for bin packing and GP for distributing communication tasks

with graph partitioning. Also, Norm. in fifth column indicates the improvement

in maximum volume, which is calculated as maximum volume of the specified

method divided by maximum volume of the first phase. This gives us how much

each method (BP and GP) decreases the maximum volume. According to this

division, it can be inferred that the lower norm. value, the higher improvement.

Additionally, Figures 5.1, 5.2 and 5.3 include line plots that show comparison

of the results of the three chosen data.

5.1 Results for C = A×B

This section includes experimental results of multiplication of two different sparse

matrices. Three example multiplication is tested using instances in Table 5.2.

A B
Instance 1 amazon0302 amazon0302-user2
Instance 2 amazon0312 mazon0312-user2
Instance 3 thermomech dK thermomech dM

Table 5.2: Instances of C = A×B
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Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

amazon0302 1st 196589.2 2314.2 - 3.014 22695.6 201.6 2.274

BP 196589.2 987.0 0.43 1.284 25245.8 191.8 1.944

GP 196589.2 926.8 0.40 1.208 25301.4 183.4 1.856

amazon0312 1st 597211.8 7660.0 - 3.282 33332.0 250.8 1.924

BP 597211.8 2827.0 0.37 1.212 43150.8 252.2 1.498

GP 597211.8 2929.4 0.38 1.256 39149.8 251.2 1.642

thermomech dK 1st 277905.6 1515.6 - 1.394 1350.8 8.4 1.592

BP 277905.6 1204.6 0.79 1.108 1347.0 8.4 1.596

GP 277905.6 1216.0 0.80 1.120 1351.6 8.4 1.590

Table 5.3: C = A×B, K = 256

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

amazon0302 1st 225474.8 1939.0 - 4.402 39988.8 299.0 3.828

BP 225474.8 674.4 0.35 1.532 45785.8 210.8 2.356

GP 225476.8 562.4 0.29 1.276 45928.2 209.8 2.338

amazon0312 1st 701270.0 5439.2 - 3.970 68890.0 472.8 3.514

BP 701270.0 2133.2 0.39 1.558 94522.6 472.0 2.558

GP 701270.4 1735.0 0.32 1.266 88159.4 467.6 2.716

thermomech dK 1st 403665.6 1070.0 - 1.356 2813.4 9.2 1.676

BP 403665.6 888.4 0.83 1.128 2809.8 8.8 1.606

GP 403665.6 889.8 0.83 1.128 2815.8 9.2 1.672

Table 5.4: C = A×B, K = 512
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Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

amazon0302 1st 256536.4 1435.6 - 5.732 60558.4 351.8 5.950

BP 256536.0 557.6 0.39 2.228 69539 234.6 3.454

GP 256555.8 423.2 0.29 1.686 69624 211.2 3.106

amazon0312 1st 816563.6 5096.0 - 6.390 119300.6 871.0 7.480

BP 816563.2 1796.0 0.35 2.252 166384.8 758.6 4.670

GP 816582.4 1498.4 0.29 1.880 158762.8 749.2 4.834

thermomech dK 1st 587916.8 796.8 - 1.390 5775.2 9.2 1.632

BP 587916.8 653.8 0.82 1.140 5806.2 9.2 1.622

GP 587916.8 655.6 0.82 1.142 5811.0 9.0 1.586

Table 5.5: C = A×B, K = 1024

For C = A × B operation, it can be inferred from tables that, the second

phase decreases maximum communication volume sharply. When amazon0302 is

taken into account, bin packing reduce the maximum volume by almost 57% for

K = 256, 65% for K = 512 and 70% for K = 1024 over the first phase. Although

bin packing performs quite good in decreasing maximum volume, proposed GP

still outperforms it. For instance, for amazon0302, GP is, 6% for K = 256, 17%

for K = 512 and 24% for K = 1024 better than BP.

Both proposed model and bin packing cannot provide better partitioning re-

sults in terms of maximum volume for data thermomech dK. This matrix has a

relatively uniform communication task size distribution and in such cases, it is

expected that BP and GP to perform close.

Figure 5.1 shows the line plot of the results that are mentioned above.
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Figure 5.1: Comparison of maximum volume values for C = A×B

5.2 Results for C = A× A

In this section, 12 different data sets are tested since C = A×A is more common.

Results are given in Table 5.6, 5.7 and 5.8.

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

2cubes sphere 1st 1707828.8 8814.2 - 1.322 3536.0 21.8 1.578

BP 1707828.8 7663.0 0.87 1.148 3558.2 21.0 1.512

GP 1707828.8 7150.2 0.81 1.070 3838.4 23.4 1.560

598a 1st 1054261.0 7645.0 - 1.854 2577.4 30.6 3.038

BP 1054261.0 4453.8 0.58 1.080 2736.8 28.2 2.636

GP 1054261.0 4580.6 0.60 1.112 2711.4 28.6 2.700

bfly 1st 144704.8 836.0 - 1.478 17406.2 96.2 1.416

BP 144704.0 723.2 0.87 1.278 15842.8 85.0 1.376

GP 144704.0 630.4 0.75 1.116 16623.4 80.6 1.242

brack2 1st 565889.0 4098.4 - 1.856 2327.0 28.8 3.172

BP 565889.0 2536.4 0.62 1.146 2692.4 29.4 2.800

GP 565889.0 2587.4 0.63 1.170 2612.0 30.0 2.942

Continued on next page
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Table 5.6 – continued from previous page

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

cca 1st 41645.4 303.8 - 1.874 8545.6 49.4 1.480

BP 41645.4 232.2 0.76 1.432 8161.4 58.0 1.818

GP 41798.6 186.2 0.61 1.138 8421.0 52.8 1.606

cp2k-h2o-.5e7 1st 2021090.8 10391.8 - 1.316 3937.4 21.8 1.420

BP 2021090.8 8395.4 0.81 1.064 3857.8 21.0 1.394

GP 2021090.8 8388.6 0.81 1.066 4185.6 23.4 1.432

cp2k-h2o-e6 1st 643458.4 3292.8 - 1.310 3924.2 21.4 1.398

BP 643458.4 2673.0 0.81 1.062 3593.2 20.6 1.468

GP 643458.4 2688.2 0.82 1.068 4022.4 21.6 1.376

cvxbqp1 1st 131356.8 827.6 - 1.612 2033.6 14.0 1.762

BP 131356.8 563.0 0.68 1.096 2344.4 15.2 1.662

GP 131356.8 588.2 0.71 1.146 2338.2 15.0 1.642

fe rotor 1st 1013511.2 6275.8 - 1.584 3021.2 37.4 3.166

BP 1013511.2 5282.6 0.84 1.334 3399.2 49.8 3.750

GP 1013511.2 4573.2 0.73 1.156 3394.8 39.0 2.940

fe tooth 1st 674519.2 5370.0 - 2.038 2472.0 29.0 3.004

BP 674519.2 3012.2 0.56 1.144 2723.6 28.4 2.670

GP 674519.2 3006.8 0.56 1.140 2680.4 26.2 2.502

finance256 1st 367161.8 1923.6 - 1.342 1371.0 8.4 1.568

BP 367161.8 1588.8 0.83 1.104 1619.8 11.8 1.864

GP 367161.8 1569.6 0.82 1.092 1791.4 12.2 1.746

majorbasis 1st 364176.2 1964.6 - 1.380 1415.4 8.2 1.484

BP 364176.2 1721.0 0.88 1.208 1020.6 6.8 1.706

GP 364176.2 1601.6 0.82 1.126 1420.6 8.2 1.480

mario002 1st 195698.2 1091.8 - 1.428 1412.0 8.4 1.524

BP 195698.2 842.8 0.77 1.102 1403.4 8.4 1.532

Continued on next page
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Table 5.6 – continued from previous page

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

GP 195698.2 845.8 0.77 1.106 1407.6 8.4 1.528

mark3jac140 1st 304053.4 1751.2 - 1.474 4038.0 31.8 2.016

BP 304053.4 1334.6 0.76 1.122 4597.8 35.6 1.982

GP 304053.4 1385.4 0.79 1.168 4850.4 39.0 2.058

onera dual 1st 161960.8 973.0 - 1.536 2719.6 27.2 2.558

BP 161960.8 937.8 0.96 1.482 2368.4 21.2 2.290

GP 161960.8 719.4 0.74 1.138 2653.4 22.2 2.140

poisson3Da 1st 1329005.6 8910.4 - 1.718 3891.4 26.8 1.762

BP 1329005.6 5507.4 0.62 1.060 6255.6 42.0 1.718

GP 1329005.6 5796.4 0.65 1.116 6184.8 42.2 1.748

tandem dual 1st 174342.8 1018.4 - 1.494 2685.4 24.8 2.364

BP 174342.8 1066.8 1.05 1.564 2369.2 21.4 2.314

GP 174342.8 773.8 0.76 1.136 2651.4 22.2 2.142

tmt sym 1st 394253.6 2006.4 - 1.302 1424.8 8.4 1.510

BP 394253.6 1718.0 0.86 1.116 1202.4 8.0 1.704

GP 394253.6 1664.6 0.83 1.082 1423.8 8.4 1.510

torso2 1st 238723.0 1382.4 - 1.482 1302.4 8.4 1.652

BP 238723.0 1382.4 1.00 1.482 1090.2 7.4 1.736

GP 238723.0 1049.4 0.76 1.126 1301.4 8.4 1.652

wave 1st 1504638.0 9177.4 - 1.562 3117.8 48.4 3.976

BP 1504638.0 7273.2 0.79 1.236 3218.0 49.2 3.916

GP 1504638.0 7029.8 0.77 1.196 3284.2 50.8 3.960

Table 5.6: C = A× A, K = 256
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Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

2cubes sphere 1st 2276742.2 5980.0 - 1.346 7428.8 23.8 1.638

BP 2276742.2 5152.2 0.86 1.160 7697.2 24.2 1.606

GP 2276742.2 4865.0 0.81 1.094 8389.4 24.8 1.514

598a 1st 1469042.8 5329.0 - 1.860 5476.8 30.0 2.804

BP 1469042.8 3157.6 0.59 1.100 5972.2 29.6 2.536

GP 1469042.8 3307.4 0.62 1.150 5950.4 30.0 2.582

bfly 1st 166922.4 524.8 - 1.608 26581.6 85.6 1.650

BP 166921.6 444.8 0.85 1.364 23580.0 71.0 1.544

GP 166921.6 382.4 0.73 1.172 24379.2 63.6 1.336

brack2 1st 826176.4 3682.4 - 2.282 4937.2 39.8 4.130

BP 826176.4 1905.2 0.52 1.180 5874.8 41.8 3.646

GP 826176.4 1947.2 0.53 1.208 5744.2 36.8 3.282

cca 1st 50892.2 181.4 - 1.824 10947.2 39.8 1.864

BP 50892.2 145.2 0.80 1.460 10343.6 36.0 1.782

GP 50892.2 113.8 0.63 1.144 10596.4 30.2 1.460

cp2k-h2o-.5e7 1st 2522116.2 7187.4 - 1.460 7533.0 21.4 1.454

BP 2522116.2 5367.6 0.75 1.090 7614.6 21.6 1.452

GP 2522116.2 5338.0 0.74 1.082 8306.6 23.2 1.432

cp2k-h2o-e6 1st 793205.8 2293.8 - 1.480 7373.4 22.0 1.528

BP 793205.8 1667.4 0.73 1.076 6786.0 19.6 1.480

GP 793205.8 1695.6 0.74 1.094 7623.6 22.0 1.476

cvxbqp1 1st 192599.8 700.4 - 1.862 4064.0 17.6 2.218

BP 192599.8 440.8 0.63 1.172 4649.4 17.4 1.916

GP 192599.8 445.4 0.64 1.186 4675.8 18.0 1.972

fe rotor 1st 1449077.6 4755.8 - 1.680 6480.2 40.8 3.222

BP 1449077.6 3774.2 0.79 1.334 7465.0 46.2 3.170

Continued on next page
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Table 5.7 – continued from previous page

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

GP 1449077.6 3336.8 0.70 1.176 7464.2 39.8 2.732

fe tooth 1st 953480.8 4039.2 - 2.170 5185.0 29.4 2.902

BP 953480.8 2183.0 0.54 1.172 5958.0 29.8 2.562

GP 953480.8 2212.8 0.55 1.188 5859.8 28.6 2.498

finance256 1st 567635.4 1861.8 - 1.680 5268.0 16.6 1.616

BP 567635.4 1249.0 0.67 1.128 5660.6 20.8 1.88

GP 567635.4 1241.2 0.67 1.120 6024.2 20.4 1.736

majorbasis 1st 530204.0 1452.0 - 1.402 2912.8 8.4 1.476

BP 530204.0 1296.0 0.89 1.254 2099.2 6.8 1.658

GP 530204.0 1181.4 0.81 1.140 2959.0 8.4 1.454

mario002 1st 280145.8 790.0 - 1.442 2898.8 9.2 1.626

BP 280145.8 612.6 0.78 1.122 2870.0 8.8 1.570

GP 280145.8 613.6 0.78 1.122 2885.4 9.0 1.598

mark3jac140 1st 394977.0 1277.8 - 1.658 9451.8 46.0 2.490

BP 394977.0 900.0 0.70 1.168 11088.4 42.2 1.95

GP 394977.0 919.4 0.72 1.192 11678.0 54.0 2.368

onera dual 1st 216017.8 685.8 - 1.626 5559.4 28.0 2.580

BP 216017.8 617.8 0.90 1.462 4787.0 21.8 2.334

GP 216017.8 491.0 0.72 1.166 5407.6 23.0 2.178

poisson3Da 1st 1982418.4 7467.8 - 1.928 9206.2 32.2 1.790

BP 1982418.4 4146.0 0.56 1.072 15266.0 48.4 1.624

GP 1984022.2 4334.2 0.58 1.116 15301.8 53.2 1.778

tandem dual 1st 233553.8 692.0 - 1.516 5591.6 23.2 2.122

BP 233553.8 688.2 0.99 1.508 4840.2 20.2 2.138

GP 233553.8 524.8 0.76 1.152 5512.4 21.6 2.006

tmt sym 1st 562842.0 1434.8 - 1.306 2915.6 8.2 1.438

Continued on next page
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Table 5.7 – continued from previous page

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

BP 562842.0 1228.2 0.86 1.116 2412.6 8.0 1.696

GP 562842.0 1210.4 0.84 1.104 2913.8 8.2 1.442

torso2 1st 349175.6 955.8 - 1.400 2744.2 8.8 1.642

BP 349175.6 972.0 1.02 1.424 2113.2 7.6 1.842

GP 349175.6 772.2 0.81 1.132 2743.0 8.8 1.642

wave 1st 2056352.0 6247.0 - 1.556 6532.0 50.6 3.966

BP 2056352.0 5074.8 0.81 1.266 6794.6 52.4 3.948

GP 2056352.0 4713.6 0.75 1.172 7039.8 56.8 4.132

Table 5.7: C = A× A, K = 512

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

2cubes sphere 1st 3053095.2 4167.6 - 1.400 15516.4 23.6 1.556

BP 3053095.2 3477.2 0.83 1.166 16942.4 25.8 1.560

GP 3053095.2 3341.8 0.80 1.122 18435.6 27.0 1.498

598a 1st 2031932.4 3566.2 - 1.796 11546.2 27.6 2.448

BP 2031932.4 2235.8 0.63 1.126 13027.6 28.4 2.232

GP 2031932.4 2319.4 0.65 1.172 13070.6 29.6 2.318

bfly 1st 191643.2 320.8 - 1.716 35082.2 62.4 1.820

BP 191643.2 273.6 0.85 1.464 31128.4 50.2 1.652

GP 191643.2 218.4 0.68 1.166 32260.4 43.2 1.370

brack2 1st 1204386.6 2805.6 - 2.386 10561.6 39.2 3.802

BP 1204386.6 1396.6 0.50 1.188 12931.2 40.6 3.216

GP 1204386.6 1445.4 0.52 1.228 12740.6 39.4 3.168

cca 1st 66031.6 116.8 - 1.810 16315.8 29.0 1.822

Continued on next page
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Table 5.8 – continued from previous page

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

BP 66031.6 96.0 0.82 1.488 15445.0 25.4 1.682

GP 66031.6 75.4 0.65 1.170 15849.2 22.2 1.434

cp2k-h2o-.5e7 1st 3223588.6 4802.2 - 1.524 14097.4 21.6 1.568

BP 3223588.6 3475.6 0.72 1.106 15181.8 21.8 1.472

GP 3223588.6 3503.6 0.73 1.112 16499.2 24.2 1.502

cp2k-h2o-e6 1st 1022555.4 1565.0 - 1.566 13597.2 22.4 1.688

BP 1022555.4 1109.8 0.71 1.112 12973.0 20.4 1.610

GP 1022555.4 1136.8 0.73 1.138 14425.8 23.0 1.632

cvxbqp1 1st 267422.0 639.4 - 2.448 8029.0 23.4 2.986

BP 267422.0 320.6 0.50 1.228 9061.6 20.2 2.282

GP 267422.0 320.8 0.50 1.230 9142.4 21.6 2.420

fe rotor 1st 2062724.2 3706.4 - 1.840 13694.6 40.2 3.006

BP 2062724.2 2693.8 0.73 1.336 16269.0 47.2 2.974

GP 2062741 2449.2 0.66 1.216 16459.4 45.8 2.852

fe tooth 1st 1358169.2 2809.8 - 2.120 10913.2 31.4 2.948

BP 1358169.2 1604.6 0.57 1.210 13068.8 32.4 2.538

GP 1358169.2 1591.8 0.57 1.200 12969.2 31.0 2.448

finance256 1st 775548.2 1545.4 - 2.038 14817.2 25.2 1.742

BP 775548.2 933.8 0.60 1.234 16115.4 26.6 1.690

GP 775695.0 937.8 0.61 1.240 16853.0 26.6 1.616

majorbasis 1st 777936.8 1111.0 - 1.462 5957.6 9.0 1.546

BP 777936.8 965.8 0.87 1.272 4364.0 7.4 1.738

GP 777936.8 866.8 0.78 1.140 6212.4 9.0 1.484

mario002 1st 398408.6 567.8 - 1.460 5898.4 9.4 1.632

BP 398408.6 441.6 0.78 1.134 5813.4 9.2 1.620

GP 398408.6 439.2 0.77 1.132 5857.0 9.2 1.610

Continued on next page
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Table 5.8 – continued from previous page

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

mark3jac140 1st 532522.8 991.4 - 1.906 21246.8 48.4 2.334

BP 532520.4 629.8 0.64 1.210 23972.8 55 2.35

GP 532715.6 661.4 0.67 1.270 25804.6 69.2 2.748

onera dual 1st 287577.2 448.2 - 1.596 11198.0 29.2 2.670

BP 287577.2 427.4 0.95 1.522 9634.2 22.8 2.424

GP 287577.2 326.0 0.73 1.160 11014.4 24.4 2.268

poisson3Da 1st 3108008.4 9132.0 - 3.008 22337.6 47.0 2.154

BP 3108008.4 3418.0 0.37 1.122 36814.8 59.2 1.646

GP 3115837.4 3575.6 0.39 1.176 37717.4 61.8 1.678

tandem dual 1st 307400.8 463.6 - 1.544 11339.0 25.6 2.312

BP 307400.8 461.8 1.00 1.538 9708.2 20.4 2.150

GP 307400.8 346.4 0.75 1.152 11221.2 22.2 2.026

tmt sym 1st 803731.8 1095.2 - 1.396 5922.8 8.8 1.522

BP 803731.8 877.6 0.80 1.118 4784.2 8.0 1.712

GP 803731.8 872.6 0.80 1.110 5911.0 8.8 1.524

torso2 1st 509242.2 705.6 - 1.418 5683.6 9.2 1.658

BP 509242.2 718.2 1.02 1.444 4209.2 7.8 1.894

GP 509242.2 567.0 0.80 1.140 5693.2 9.2 1.656

wave 1st 2798127.0 4858.0 - 1.778 13513.4 54.2 4.108

BP 2798127.0 3527.8 0.73 1.290 14301.6 46.8 3.352

GP 2798127.0 3206.0 0.66 1.174 15022.4 53.0 3.616

Table 5.8: C = A× A, K = 1024

In the results of this section, it is shown on the tables that, for bfly,

cca, 2cubes sphere, fe rotor, finance256, majorbasis, onera dual, tandem dual,
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tmt sym, torso2 and wave, GP ends up with more effective partitionings. How-

ever, for other data sets, BP and GP perform close due to uniform communi-

cation tasks sizes. Despite this, for a couple of data, the proposed model is

significantly better than the baseline method. For example, when tandem dual

is analyzed, GP model shows almost 25% improvement against baseline method.

Like tandem dual, in most of the data, the proposed model outperforms baseline

algorithm.

Examples of the three matrices that represent the results on tables are shown

in Figure 5.2.
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Figure 5.2: Comparison of maximum volume values for C = A× A

5.3 Results for C = A× AT

C = A× AT is tested on 10 different matrices.

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

cont11 l 1st 324599.4 1610.0 - 1.270 1518.2 8.4 1.418

BP 324599.4 1506.6 0.94 1.186 1016.8 6.6 1.662

GP 324599.4 1367.8 0.85 1.078 1517.2 8.4 1.418

Continued on next page
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Table 5.9 – continued from previous page

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

fome13 1st 241232.6 1369.0 - 1.452 6810.4 31.0 1.166

BP 241232.6 1002.0 0.73 1.064 7010.4 31.0 1.132

GP 241232.6 1039.2 0.76 1.100 6978.8 31.0 1.136

fome21 1st 103666.0 911.0 - 2.248 5582.8 45.2 2.072

BP 103663.2 545.8 0.60 1.348 4612.2 34.0 1.888

GP 103663.6 453.6 0.50 1.122 5621.0 39.8 1.812

fxm3 16 1st 56328.4 1844.2 - 8.400 1950.6 34.6 4.538

BP 56328.4 557.0 0.30 2.534 2024.2 20.0 2.530

GP 62734.2 469.0 0.25 1.912 4043.0 34.8 2.202

fxm4 6 1st 76774.6 1168.6 - 3.898 1276.0 31.6 6.332

BP 76774.6 603.6 0.52 2.010 990.4 21.8 5.628

GP 85785.0 465.6 0.40 1.390 2703.0 31.6 3.034

pds-30 1st 84254.8 735.4 - 2.234 5644.0 52.4 2.376

BP 84253.6 423.4 0.58 1.288 4639.2 40.0 2.208

GP 84254.0 372.8 0.51 1.132 5698.0 44.6 2.002

pds-40 1st 103761.0 912.8 - 2.250 5791.6 51.0 2.256

BP 103758.8 552.6 0.61 1.364 4643.6 41.2 2.270

GP 103758.8 463.4 0.51 1.142 5805.8 41.2 1.818

sgpf5y6 1st 212399.2 2750.4 - 3.314 2571.6 8.08 8.758

BP 212397.2 1136.4 0.41 1.372 3117.0 59.2 4.854

GP 212397.4 969.8 0.35 1.168 2919.8 45.2 3.960

watson 1 1st 68126.0 619.6 - 2.330 704.6 9.4 3.416

BP 68126.0 444.2 0.72 1.670 858.2 11.0 3.280

GP 68492.0 324 0.52 1.212 966 12.6 3.342

watson 2 1st 68972.8 707.6 - 2.626 606.0 7.8 3.304

BP 68972.8 455.8 0.64 1.690 776.4 11.6 3.822

Continued on next page
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Table 5.9 – continued from previous page

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

GP 69176.8 323.6 0.46 1.200 879.0 13.8 4.020

Table 5.9: C = A× AT , K = 256

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

cont11 l 1st 461205.8 1197.0 - 1.328 3052.2 8.6 1.442

BP 461205.8 1107.4 0.93 1.230 2013.8 6.8 1.728

GP 461205.8 987.0 0.82 1.096 3044.4 8.6 1.446

fome13 1st 282017.4 964.6 - 1.750 18673.6 54.4 1.492

BP 282016.6 591.8 0.61 1.076 19878.0 53.2 1.372

GP 282017.2 631.0 0.65 1.146 19821.6 51.6 1.332

fome21 1st 136761.0 621.2 - 2.326 10712.2 62.4 2.984

BP 136759.8 358.0 0.58 1.340 9336.2 43.2 2.368

GP 136760 305.0 0.49 1.140 10968.0 48.0 2.242

fxm3 16 1st 214944.2 2898.6 - 6.908 3178.0 34.0 5.468

BP 214944.2 685.6 0.24 1.634 3250.6 32.2 5.072

GP 215228.6 677.6 0.23 1.612 3276.2 29.0 4.534

fxm4 6 1st 275743.2 1249.8 - 2.320 2553.8 40.8 8.172

BP 275743.2 696.2 0.56 1.294 2675.4 29.4 5.628

GP 275743.2 691.6 0.55 1.284 2768.2 32.0 5.916

pds-30 1st 114084.4 530.0 - 2.380 10679.6 76.2 3.65

BP 114080.8 298.4 0.56 1.340 9219.8 58.6 3.254

GP 114080.8 255.4 0.48 1.146 10818.6 52.0 2.460

pds-40 1st 136003.4 629.0 - 2.368 10986.0 70.0 3.262

BP 135998.6 357.6 0.57 1.346 9333.2 47.2 2.588

Continued on next page
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Table 5.10 – continued from previous page

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

GP 135999.0 304.2 0.48 1.142 11150.2 50.4 2.314

sgpf5y6 1st 346678.4 1749.2 - 2.582 7595.2 105.2 7.076

BP 346677.6 812.4 0.46 1.200 9135.8 70.0 3.908

GP 346677.6 809.6 0.46 1.196 8545.2 62.6 3.752

watson 1 1st 163171.8 744.0 - 2.336 1563.8 12.6 4.128

BP 163171.8 492.2 0.66 1.544 1729.6 16.6 4.908

GP 163386.2 402.0 0.54 1.260 1780.0 13.6 3.898

watson 2 1st 138786.0 775.2 - 2.862 1360.8 10.6 3.984

BP 138786.0 456.4 0.59 1.682 1665.6 12.0 3.682

GP 139604.6 335.8 0.43 1.230 2011.4 12.2 3.120

Table 5.10: C = A× AT , K = 512

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

cont11 l 1st 651029.8 879.2 - 1.382 6119.0 9.4 1.574

BP 651029.8 772.4 0.88 1.214 4002.6 7.2 1.842

GP 651029.8 708.4 0.81 1.112 6103.2 9.4 1.578

fome13 1st 332381.2 641.8 - 1.976 36414.8 66.0 1.858

BP 332366.8 442.8 0.69 1.364 39858.6 56.6 1.456

GP 332369.8 393.4 0.61 1.210 39751.0 58.2 1.498

fome21 1st 184870.2 479.0 - 2.654 19652.6 73.0 3.804

BP 184867.2 257.6 0.54 1.426 17622.0 63.0 3.662

GP 184867.2 208.8 0.44 1.154 19824.0 51.0 2.632

fxm3 16 1st 518355.8 1957.0 - 3.862 6120.2 35.4 5.924

BP 518350.8 699.6 0.36 1.382 6560.6 32.0 4.998

Continued on next page
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Table 5.11 – continued from previous page

Volume Message Count

Matrix Ph. Total Max. Norm. Imb. Total Max. Imb.

GP 518365.6 711.8 0.36 1.404 6780.0 36.0 5.438

fxm4 6 1st 497502.6 1724.2 - 3.550 6297.4 43.4 7.054

BP 497500.8 656.8 0.38 1.354 6788.4 39.0 5.886

GP 497511.0 628.4 0.36 1.294 6908.0 37.0 5.482

pds-30 1st 158621.6 384.4 - 2.482 18827.8 75.2 4.090

BP 158613.2 220.4 0.57 1.422 16821.0 52.0 3.162

GP 158613.4 181.0 0.47 1.170 18780.6 46.2 2.520

pds-40 1st 183238.8 442.6 - 2.474 19660.0 74.6 3.886

BP 183235.6 256.4 0.58 1.432 17389.0 60.8 3.582

GP 183235.8 206.0 0.47 1.152 19841.6 50.2 2.592

sgpf5y6 1st 528573.6 1128.8 - 2.188 17065.4 96.0 5.760

BP 528569.2 643.6 0.57 1.246 17673.8 61.2 3.546

GP 528569.6 649.0 0.57 1.256 17307.8 68.4 4.048

watson 1 1st 212189.8 705.4 - 3.404 2283.8 15.6 6.988

BP 212189.8 491.2 0.70 2.368 2844.4 23.6 8.474

GP 221908.8 298.2 0.42 1.378 6935.0 21.8 3.220

watson 2 1st 313009.0 813.8 - 2.664 3384.0 12.6 3.808

BP 313006.8 497.8 0.61 1.628 3766.4 14.4 3.912

GP 313843.2 383.8 0.47 1.254 4124.2 14.4 3.576

Table 5.11: C = A× AT , K = 1024

We conducted experiments of C = A×AT on wide variety of matrices. Similar

to the previous findings, GP performs better than BP in most cases. GP obtain

better results for matrices cont11 l, fome21, fxm3 16, fxm4 6, pds-30, pds-40,

sgpf5y6, watson-1 and watson-2. Baseline and the proposed method could not

find successful partitions only for single matrix fome13. Some of the matrices
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like fxm3 16, fxm4 6, sgpf5y6 show an incredible performance improvement by

reducing maximum volume by more than 60%. Also, proposed model ended up

more than 15-20% improvement over bin packing in some data sets like pds-30,

pds-40, watson 1 and watson 2.
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Figure 5.3: Comparison of maximum volume values for C = A× AT .
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Chapter 6

Conclusion and Future Work

In this thesis, we addressed a new graph partitioning model for efficient paral-

lelization of SPGEMM. Our approach is a two-phase method in which both phases

utilizes a different bipartite graph models. There are two different objectives in

our approach: reducing total communication volume and maximum communica-

tion volume sent by processors. This model consist of two phases. First phase

aims to minimize total volume. In the second phase, using partitioning results of

the first phase, aims to reduce maximum communication volume. Experiments

show that our model is able to find partitions with better communication char-

acteristics and reduces maximum communication volume when it is compared to

the partitions produced by a heuristic that aims to achieve same feat.

As a future work, different partitioners can be evaluated especially the ones

with a special emphasis on balancing part weights as reducing maximum volume

depends on this formulation.
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