Rayleigh-bloch waves in CMUT arrays

Date
2014
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Print ISSN
0885-3010
Electronic ISSN
Publisher
Institute of Electrical and Electronics Engineers Inc.
Volume
61
Issue
12
Pages
2139 - 2148
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Using the small-signal electrical equivalent circuit of a capacitive micromachined ultrasonic transducer (CMUT) cell, along with the self and mutual radiation impedances of such cells, we present a computationally efficient method to predict the frequency response of a large CMUT element or array. The simulations show spurious resonances, which may degrade the performance of the array. We show that these unwanted resonances are due to dispersive Rayleigh-Bloch waves excited on the CMUT surface-liquid interface. We derive the dispersion relation of these waves for the purpose of predicting the resonance frequencies. The waves form standing waves at frequencies where the reflections from the edges of the element or the array result in a Fabry-Pérot resonator. High-order resonances are eliminated by a small loss in the individual cells, but low-order resonances remain even in the presence of significant loss. These resonances are reduced to tolerable levels when CMUT cells are built from larger and thicker lates at the expense of reduced bandwidth. © 2014 IEEE.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)