Show simple item record

dc.contributor.authorYaraneri, E.en_US
dc.date.accessioned2016-02-08T10:11:24Z
dc.date.available2016-02-08T10:11:24Z
dc.date.issued2007en_US
dc.identifier.issn0021-8693
dc.identifier.urihttp://hdl.handle.net/11693/23283
dc.description.abstractLet F and K be algebraically closed fields of characteristics p > 0 and 0, respectively. For any finite group G we denote by K RF (G) = K ⊗Z G0 (F G) the modular representation algebra of G over K where G0 (F G) is the Grothendieck group of finitely generated F G-modules with respect to exact sequences. The usual operations induction, inflation, restriction, and transport of structure with a group isomorphism between the finitely generated modules of group algebras over F induce maps between modular representation algebras making K RF an inflation functor. We show that the composition factors of K RF are precisely the simple inflation functors SC, Vi where C ranges over all nonisomorphic cyclic p′-groups and V ranges over all nonisomorphic simple K Out (C)-modules. Moreover each composition factor has multiplicity 1. We also give a filtration of K RF. © 2007 Elsevier Inc. All rights reserved.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Algebraen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jalgebra.2007.06.030en_US
dc.subject(Global) Mackey functoren_US
dc.subjectBiset functoren_US
dc.subjectComposition factorsen_US
dc.subjectFiltrationen_US
dc.subjectInflation functoren_US
dc.subjectModular representation algebraen_US
dc.subjectMultiplicityen_US
dc.titleA filtration of the modular representation functoren_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage140en_US
dc.citation.epage179en_US
dc.citation.volumeNumber318en_US
dc.citation.issueNumber1en_US
dc.identifier.doi10.1016/j.jalgebra.2007.06.030en_US
dc.publisherAcademic Pressen_US
dc.identifier.eissn1090-266X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record