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Abstract

Let IF and K be algebraically closed fields of characteristics p > 0 and 0, respectively. For any finite group
G we denote by KR (G) = K®yz Go(FG) the modular representation algebra of G over K where G (FG)
is the Grothendieck group of finitely generated FG-modules with respect to exact sequences. The usual
operations induction, inflation, restriction, and transport of structure with a group isomorphism between the
finitely generated modules of group algebras over [ induce maps between modular representation algebras
making KR an inflation functor. We show that the composition factors of KRy are precisely the simple
inflation functors SC y Where C ranges over all nonisomorphic cyclic p’-groups and V ranges over all
nonisomorphic 51mp1e K Out(C)-modules. Moreover each composition factor has multiplicity 1. We also
give a filtration of KRp.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to describe the structure of the inflation functor KRy mapping
a finite group G to K ®z Go(G) where Go(G) is the Grothendieck group of finite dimensional
FG-modules. The cases CR¢ (as a biset functor) and kR (as a p-biset functor over a field k of
characteristic p) were dealt by Bouc [3, Proposition 27] and Bouc [4]. Another related work is
Webb [7] in which he studied inflation and global Mackey functors, and described the structure
of cohomology groups as these functors.
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One of our main result Theorem 6.17 states that there is a chain of inflation functors
KRrp=L_1DLoDL, >:-+DLjD---

such that ﬂj L;=0andeach L; /L; is semisimple with
Li/Li =P sty
Cc,v

where C ranges over all nonisomorphic cyclic p’-groups with £(C) = j and V ranges over all
nonisomorphic simple K Out(C)-modules. Here, £(C) is the number of prime divisors of the
order of C counted with multiplicities. Moreover L is the inflation subfunctor of KRy given
for any finite group G by

Li(G)= ﬂ Ker(KRp(Res§) : KRp(G) — KRr(X))
X

where X ranges over all cyclic p’-subgroups of G with £(X) < j. The question may be raised as
to the finding a similar result for the deflation functor KPy, where KPy is the functor mapping
a finite group G to K ®z Ko(G) and Ko(G) is the Grothendieck group of finite dimensional
projective FG-modules. Such a result follows immediately from Theorem 7.1 in which we prove
that

KPr = KR]}?

as deflation functors, where KRE denotes the dual of KRp.

A biset functor, introduced by Bouc [3], is a notion having five kind of operations unifying
the similar operations induction, inflation, transport of structure with a group isomorphism, de-
flation, and restriction which occur in group representation theory. It is defined to be an R-linear
(covariant) functor from an R-linear category b, called the biset category, to the category of (left)
R-modules where R is a commutative unital ring.

To realize some representation theoretic algebras as functors one may need to consider func-
tors from some (nonfull) subcategories of the biset category to the category of R-modules
because some bisets (morphisms of b) do not induce maps between these algebras in a natural
way. For KRy a similar situation occurs since bisets corresponding to deflations may not induce
exact functors between finitely generated module categories of group algebras over the field F
whose characteristic is p > 0. For this reason we also consider inflation functors which are de-
fined to be functors from the category i to the category of R-modules where i is the subcategory
of b with same objects and with morphisms bisets which are free from right.

The aim of this paper is to study KR as inflation functor and in particular to find its com-
position factors together with their multiplicities. Our approach to this problem can be explained
briefly as follows.

We first review some of the standard facts on the subject given in Bouc [3]. We then study
properties of two specific subfunctors of a given functor M in Section 3 in a slight general form,
namely the subfunctors Im” and Ker™ which are roughly defined to be sum of images and
intersection of preimages. Our reason in studying these subfunctors comes from the importance
of them in the context of (ordinary) Mackey functors. For a functor M whose Ker™ subfunctor
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is 0, in Proposition 3.3 we construct a bijective correspondence between the minimal subfunctors
of M and the minimal submodules of a coordinate module of M. We next observe that Ker®
subfunctor of any simple inflation functor S = S}, |, considered as (global) Mackey functor is 0.

This leads us to state Proposition 3.8 saying that any simple inflation functor S}-I,V has a unique
minimal Mackey subfunctor and this subfunctor is isomorphic to S}‘},V. Using the semisimplicity
of (global) Mackey functors over fields of characteristic 0, which can be found in Webb [8], we
observe in Theorem 3.10 that over fields of characteristic 0, any simple inflation functor S}{,V is
isomorphic to S}‘{"V as Mackey functors.

These observations imply Proposition 4.5 in which we prove that the multiplicity of a simple
inflation functor S}“, in KR is equal to the multiplicity of the simple Mackey functor S?})V
in KR which is the dimension of the K-space

Homg owew) (V. KRr(H) /1] KRE(H)),

where I} is the ideal of Endy, (H) spanned by the bisets factorizing through groups of order less
than |H |, and End, (H) is the K-algebra of (H, H)-bisets which are free from left and right, see
Section 2.

We begin to study composition factors of KRp in Section 5. Using Artin’s induction theo-
rem we show in Proposition 5.2 that if S}-I,V is a composition factor of KRy then H is a cyclic
p’-group. Next we include Lemma 5.4 about the multiplicities of composition factors with min-
imal subgroups are direct products of two groups of coprime orders. This reduces the problem
to computing the multiplicities of composition factors of KR of the form Sicqn,v where ¢ is a

prime different from p, n is a natural number, and Cy» is a cyclic group of order g". For this
kind of composition factors, by calculating the dimensions of the above Hom spaces we are able
to show in Lemma 5.3 that the multiplicities are all equal to 1. We state our final result about this
topic as Theorem 5.5.

Our aim in Section 6 is to study subfunctors of KRy and in particular sections of KR which
are semisimple functors. Motivated by the results which we obtained already, we define two
subfunctors K,, < F,, of KRy for a natural number n. Given any cyclic p’-group C of order n, we
prove in Proposition 6.14 that F, /K, is a semisimple inflation functor whose simple summands
are the simple inflation functors Sic‘ v Where V ranges over all nonisomorphic simple K Out(C)-
modules. Finally, using these subfunctors we construct some series of KRy whose factors are
semisimple inflation functors and cover all composition factors of KR, see Theorem 6.15 and
its consequences.

Our notations are mostly standard. Let H < G > K be finite groups. By the notation
HgK < G we mean that g ranges over a complete set of representatives of double cosets of
(H, K) in G. The notation S <, G appearing in an index set means that S ranges over all non-
G-conjugate subgroups of G. The coefficient rings on which we are working will be explained
at the beginnings of each section.

2. Preliminaries

In this section, we simply collect some crucial results on bisets and functors in Bouc [3].
Throughout R is a commutative unital ring. Let G, H, and K be finite groups. A (G, H)-biset is a
finite set U having a left G-action and a right H -action such that the two actions commute. Given
a (G, H)-biset U and an (H, K)-biset V, the cartesian product U x V becomes a right H-set
with the action (u, v)h = (uh, Rl v). If we let # ® v denote the H-orbit of U x V containing
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(u,v), then the set U x g V of the H-orbits of U x V becomes a (G, K)-biset with the actions
gu®v)k = gu®@uvk. Any (G, H)-biset U is aleft G x H-set by the action (g, h)u = guh_l, and
conversely. Terminology for (G, H)-bisets is inherited from terminology for G x H-sets. Thus
transitive (G, H)-bisets are isomorphic to bisets of the form (G x H)/L where L is a subgroup
G x H. We write [U] for the isomorphism class of a biset U. Let L be a subgroup of G x H.
We define

pi(L)y={geG:3heH, (g.h)elL}, and ki (L)={geG: (g.1)eL},
p2L)={heH:3g€G, (g.h)eL}, and ky(L)y={he H: (1,h)eL}.

Then k; (L) is a normal subgroup p; (L), and k1 (L) x k2 (L) is a normal subgroup of L, and the
three quotient groups which we denote by ¢ (L) are isomorphic. If L <G x Hand M < H x K
we write

LxM={(g.k)eGxK:3heH, (g h)eL, (hk)yeM}.
Proposition 2.1. (See [3].) Let L < G x H and M < H x K. Then

((Gx H)/L) xg ((H x K)/M) = Y (G xK)/(Lx"Dm).
p2(LYhp (M)SH

There are five types of basic bisets so that any transitive biset is isomorphic to a product of
them. For H < G > N and isomorphism of groups ¥ : G — G, they are
Indy = (G x H)/{(h,h): he H},
Res§) = (H x G)/{(h,h): h e H},
Infg/N =(G x G/N)/{(g.gN): g € G},
Defg y = (G/N x G)/{(gN,g): g € G},
Iso§ () = (G' x G)/{(¥(9). 8): g € G}.

For any L < G x H we have

~ 111G -P1(L) p1(L)/ ki (L) p2(L) H
(G > H)/L = Indy, ) Infp 1)1y (1) 1991 ko) ) P (1) k1) RES o)
where 1 (hk> (L)) = gk (L) if and only if (g, h) € L.
Let x be a family of finite groups closed under taking subgroups, taking isomorphisms and
taking quotients. We define the biset category b (on x over R), which is R-linear, as follows:

e The objects are the groups in x.

e If H and G are in x then Homy(H, G) = RB(G x H) is the Burnside group of (G, H)-
bisets, with coefficients in R.

e Composition of morphisms is obtained by R-linearity from the product (U, V)= U xg V.
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Any R-linear (covariant) functor from the category b to the category of left R-modules is called
a biset functor (on x over R). We denote by § the category of biset functors, which is an abelian
category.

We also want to consider some nonfull subcategories of b and R-linear functors from these
subcategories to the category of left R-modules. Let i be the subcategory of b with the same
objects and with the morphisms

Hom;(H, G) = @ R[(G x H)/L].
L<GxH: ky(L)=1

An R-linear functor from i to the category of left R-modules is called an inflation functor (on x
over R). We denote by §; the category of inflation functors.
Let m be the subcategory of b with the same objects and with the morphisms

Homy (H, G) = @ R[(Gx H)/L]'
L<«GxH: ki(L)=1=ky(L)

An R-linear functor from m to the category of left R-modules is called a (global) Mackey functor
(on x over R). We denote by §m, the category of Mackey functors. Mackey functors can also be
defined on a family x of finite groups closed under taking subgroups and taking isomorphism.

These three functor categories have similar theories. For example their simple objects are
parameterized in the same manner. From now on in this section, a functor means any of biset,
inflation or Mackey.

For any groups X and Y in x the composition of morphism gives an (End(Y), End(X))-
bimodule structure on Hom(X, Y), and for a functor M we have an End(X)-module structure on
M(X) given by fmyx = M(f)(my). For a group X in x and an End(X)-module V we define a
functor L,y and its subfunctor Jx v as follows:

Lx,v(Y)=Hom(X,Y) ®Endx) V.,
Lxv(f):Lxv(¥)—>Lxv(Z), 0Quvr fOQu,
Ixv)= [\ Ker(Lx.v(f).

feHom(Y,X)

Having defined the functors Lx v we define two important functors between the functor cat-
egory § (i.e., any of §p, §i or §m) and End(X)-module category,

Lx _:End(X)-Mod— §, Vi Ly,

and if ¢: V — W is an End(X)-module homomorphism then Ly _(¢): Ly v — Ly w is the
natural transformation whose Y € x component is the map Lx v(Y) = Lx w(Y), givenby f ®
vi= f® ),

ex:§ — End(X)-Mod, M M(X),

and if 7 : M — N is a morphism of functors (i.e., a natural transformation) then ex () is the X
component 7y : M(X) - N(X) of 7.
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Proposition 2.2. (See [3].) Let X be a group in x. Then:

(1) ex is an exact functor and Lx _ is a right exact functor.

(2) (Lx,—,ex) is an adjoint pair.

(3) If V is a projective End(X)-module then Ly v is a projective functor.

(4) If V is an indecomposable End(X)-module then Lx v is an indecomposable functor.

Let M be a functor. A group H in yx is called a minimal subgroup of M if M(H) # 0 and
M(K)=0forall K € x with |K| < |H]|.

Proposition 2.3. (See [3].) Let X be a group in x and let V be a simple End(X)-module. Then,
Jx v is the unique maximal subfunctor of Lx v and Lx v /Jx v is a simple functor whose eval-
uation at X is V. However, X may not be a minimal subgroup of this simple functor.

Proposition 2.4. (See [3].) For a group G in x, there is a direct sum decomposition
End(G) =Ext(G) & I

where I is a two sided ideal of End(G) with an R-basis consisting of the elements [(G x G)/L]
of End(G) with |q(L)| < |G|, and Ext(G) is a unital subalgebra of End(G) isomorphic to the
group algebra R Out(G) of the group of outer automorphisms of G.

A simple functor S with a minimal subgroup H is denoted by Sy v if S(H) =V.

Theorem 2.5. (See [3].) In the following an R Out(H)-module is considered as an End(H)-
module via the natural projection map End(H) — Ext(H) = R Out(H) given in 2.4.

(1) Let H be a group in x and let V be a simple R Out(H)-module. Then H is a minimal
subgroup of the simple functor Ly vy /Ju.v.So Ly yv/Juv =SHv.

(2) Let S be a simple functor and let H be a minimal subgroup S. Then Iy annihilates S(H),
and S(H) is a simple R Out(H)-module, and S = Sy vy where S(H)=1V.

(3) Su,v = Sk,w if and only if there is a group isomorphism H — K transporting V to W.

We use the notations like S = Sg,’v, L= L%(.V’ I = 181, ... to indicate respectively that §
is the biset functor, L is the inflation functor, [ is the ideal of End, (G) in 2.4. For a functor
M we also use the notation MX to indicate that it is defined on x. A functor can also be con-
sidered as a module of the category algebra of the skeletal category of its domain category (i.e.,
any of b, i, or m). Identifying the isomorphic groups in x we can form the category algebra
r=e x,ve[y] RHom(X, Y) with product being the composition of morphisms whenever they
are composable and zero otherwise, where the notation [x] denotes the representatives of the
isomorphism classes of groups in x. If M is a functor on y over R then M= ®Xe[x] M(X) is
a I'-module with the obvious action, and conversely. In this way one can define functors on a
finite family of finite groups x such that no two groups in y are isomorphic and if X is in x then
any section of X is isomorphic to a group in x. Thus in this situation functors may be regarded
as modules of finite dimensional algebras, allowing one to apply the theory of modules of finite
dimensional algebras. We will follow this approach only when we need to consider composi-
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tion series, composition factors, etc. of functors. For a more detailed study of this approach see
Webb [9] for arbitrary functor categories, and Barker [1] for biset functor categories.

3. Maximal and minimal subfunctors

Our main aim in this section is to show that, over characteristic 0 fields, any simple inflation
functor S}, |, is isomorphic to S}y |, as (global) Mackey functors. We divide this section into two
parts. In the first part we include some general results which will be crucial for some later results.

3.1. Some generalities

In this section R is a commutative unital ring, 2( is an (small) R-linear category, and § be the
category of R-linear (covariant) functors from 2 to the category of left R-modules.

For a functor M € §, an object X of 2, and an Endg (X)-submodule W of M (X), we define
two subfunctors Im% w and Ker% w Oof M whose evaluations at any object Y of 2l are given as
follows:

Yy = > MW,

feHomg (X,Y)

Kerf y )= () MO~
feHomg( (Y, X)

We collect some properties of these subfunctors in the following result.

The usage of these subfunctors in (ordinary) Mackey functor categories is well known. And
an analogue of 3.5 is proved in Bourizk [6, Lemme 1] for some subfunctors of the Burnside
functor considered as biset functors.

Remark 3.1. Let M € § be a functor, X be an object of , and N be a subfunctor of M. Suppose
that U and W are Endg (X)-submodules of N (X) and M (X), respectively. Then:

(1) Im% w and Ker% w are subfunctors of M such that Im% w(X) =W and Ker% wX)=W.
(2) If Y is an object of 2, then Im’y’ NY) = Iml))’: N is a subfunctor of N and N is a subfunctor
of Kerg‘,’{ N (YY" So Im% w 18 the subfunctor of M generated by W.
(3) If W' is an Endg (X)-submodule of W, then Im} ., and Ker?/ ,,,, are subfunctors of Im% W
and Ker% w respectively.
(4) If W is an Endg(X)-submodule of M(X), then Im% w Imé‘(’{w = ImAX’{ wipw and
M M M
Kerx’w/ N Kerx,w = KerX’W/mW.
(@) Ker%U NN = Kerg’U, and if I = Ker%o then Kergf,o =1.
M/N

M M/N M
6) (ImX’W +N)/N = ImX,(W+N(X))/N(X) and KerXVN(X) /N = Kery -
Proof. All parts follow immediately from the definitions of Im and Ker. O

Lemma 3.2. Let M € § be a functor and X be an object of 2 such that M (X) is nonzero. Assume
that Kerj)‘(’{ o = 0. Then:
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(1) If W is a minimal Endg (X)-submodule of M (X), then lm%w is a minimal subfunctor of M.
(2) If I is a minimal subfunctor of M, then I(X) is a minimal Endg (X)-submodule of M (X).
Moreover I = Im%l(x).

Proof. (1) Let W be a minimal Endg (X)-submodule of M (X). If N is a subfunctor of M such
that N < ImX w» then N(X) is an Endg (X)-submodule of ImX w(X) = W implying by the
minimality of W that N(X) =0 or N(X) = W. Suppose that N(X) =0. Then by 3.1 we have
that N is a subfunctor of KerX’N(X) = Keré‘;{o =0, implying that N = 0. In the case N(X) =W
it follows by 3.1 that Im%w is a subfunctor of N; so N = Im%w. Hence Imé‘(’{w is a minimal
subfunctor of M.

(2) Let I be a minimal subfunctor of M. As I is a subfunctor of Ker% 1) by 3.1, I (X) must
be nonzero. If there is a nonzero proper Endg (X)-submodule W of I(X), then 3.1 implies that
Im% w 18 a nonzero proper subfunctor of /, contradicting to the minimality of /. Hence I (X)
is a minimal Endg(X)-submodule of M (X). Finally, as 7 (X) is nonzero it follows by 3.1 that
Iml)\(’{ X = Imgﬂ 1) is a nonzero subfunctor of /. Now the equality / = Im% 1) follows by the
minimality of /. O

The previous lemma implies

Proposition 3.3. Let M € § be a functor and X be an object of A such that M (X) is nonzero. As-
sume that KerX 0 =0. Then the maps I — I (X), ImX w < W define a bijective correspondence
between the minimal subfunctors of M and the minimal Endgy (X)-submodules of M (X).

Lemma 3.4. Let M € § be a functor and X be an object of A such that M (X) is nonzero. Assume
that Im]}(”M(X) =M. Then:

(1) If W is a maximal Endg (X)-submodule of M(X), then Ker% w is a maximal subfunctor
of M.

(2) If J is a maximal subfunctor of M, then J (X) is a maximal Endg (X)-submodule of M (X).
Moreover J = Kerggj(x).

Proof. (1) Let W be a maximal Endg (X)-submodule of M (X). Then by 3.1 Ker% w s not
equal to M. If N is a subfunctor of M containing Ker% w then the maximality of W implies that
W =N(X) or N(X)=M(X). In the case N(X) = M(X), it follows by 3.1 that M = Im%M(X)
is a subfunctor N, implying that M = N. Assume now that N(X) = W. Then 3.1 gives that N is
a subfunctor of KerX wo and so N = KerX we Hence KerX W is a maximal subfunctor of M.

(2) Let J be a maximal subfunctor of M. In particular J is not equal to M, implying by the
condition ImX MX) = = M that J(X) is not equal to M (X). If there is an Endg (X)-submodule W
of M (X) containing J(X) then by 3.1 we have J < KerX 100 S KerX w- The maximality of J
implies that KerX w =M or KerX w = J. And by evaluating at X we see that W = M (X) or
wW=1J (X ). Hence J (X) is a maximal Endg(X)-submodule of M (X). Finally, by 3.1 we have
J < KerX’ 7 The equality follows because J is maximal subfunctor of M and KerX’ 7% is
notequalto M. O

The previous lemma implies
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Proposition 3.5. Let M € § be a functor and X be an object of U such that M (X) is nonzero.
Assume that Iml}‘(’lM(X) = M. Then the maps J — J(X), Keri)‘(’lw < W define a bijective cor-
respondence between the maximal subfunctors of M and the maximal Endg (X)-submodules
of M (X).

Corollary 3.6. Let M € § be a functor and X be an object of 2l such that M (X) is nonzero. Then
M is simple if and only ifIm%M(X) =M, Ker%o =0, and M (X) is a simple Endg (X)-module.

Proof. Suppose that M is simple. For any nonzero proper Endg (X)-submodule W of M (X), it
follows by 3.1 that Im% w 7 0and Ker% o 7 M are proper subfunctors of M. Since M is simple,

W = M(X) and Ker%0 =0. So M(X) is a simple module and Img‘(’{M(X) = M. Conversely, if

M satisfies the given conditions then it follows by 3.5 that Ker% o = 0 is the unique maximal
subfunctor M. So M is simple. O

Using the properties of Im and Ker given in 3.1, we give an obvious generalization of the
previous result.

Corollary 3.7. Let M € § be a functor and X be an object of U such that N (X) is nonzero for all
nonzero subfunctors N of M. Then M is semisimple if and only ifIm%M(X) =M, Kerj)‘(/l_o =0,
and M (X) is a semisimple Endg (X)-module. '
3.2. Applications

Throughout this section we work over an arbitrary field L. We want to give some applications
of the general results obtained in Section 3.1. Especially, we want to reduce the problem of
finding multiplicities of simple inflation functors in KRy to the problem of finding multiplicities

of simple Mackey functors in KRp.

Proposition 3.8. Any simple inflation functor S}{ v has a unique minimal Mackey subfunctor M.
Moreover M = S} .

Proof. Let S = S}-I,V’ L= LiH,V, and J = J}I’V. ‘We will show that Keri,’})l = 0. Take any finite
group G. Forany T < H x G with kp(T)=1 and |¢(T)| < |H|, we see that

[(H x G)/T|Hom;(H,G) C I}
and so annihilates V = L(H), see also Bouc [3]. Consequently the image of the map
L([(H x G)/T]):L(G) — L(H)
is zero. Hence
S([(H x G)/T])(S(G)) = (L([(H x G)/T])(L(G)) + J(H))/J(H) =0.

As S is a simple inflation functor, Kerf,’jo =0 by 3.6. As |q(T)| = |H| implies k1 (T) = 1, we
have
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_ S,i
0=Kery

= () Ke(S([tH x G)/T]))

T<HXG: kp(L)=1

— ﬂ Ker(S([(H X G)/T]))

T<HXG: kop(L)=1=k (L)
_ S,m
= KerH’O .
S,m

Now 3.3 implies that M = Im}; , is the unique minimal Mackey subfunctor of S, because
S(H) is a simple Endy, (H)-module. Finally it is clear that M = S}f},v. O

The next result allows us to give a nice consequence of 3.8.
Theorem 3.9.

(1) (Bouc) Let 1. be of characteristic 0. Then, the biset functor category on x over L is semisim-
ple if and only if every group in x is cyclic.

(2) (Thévenaz—Webb) Let 1L be of characteristic 0. Then the (global) Mackey functor category
(on x) over LL is semisimple.

(3) The inflation functor category on x over L is semisimple if and only if every group in x is
trivial.

Proof. For the parts (1) and (2), see respectively Barker [1] and Webb [8, Theorem 4.1].

(3) The sufficiency is obvious. Suppose that the inflation functor category is semisimple. So
every simple inflation functor, in particular S}’L, is projective. Since End;(1) = L it follows
by 2.2 that Lil’]L is the projective cover of S },]L' By the definition of the functors Ly w we see
that Lil’]L is isomorphic to the Burnside (inflation) functor B'. Hence S}JL = B'. Suppose that x
contains a group G with |G| # 1. Then dimg, B}(G) > 2. So it suffices to show that the dimension
of S}’L(G) is 1 for any finite group G. One way of doing this is to use the arguments in Bouc
[3] which show that, for a simple functor S, the dimension of the space S(G) at a finite group G
is equal to the rank of a certain matrix. Alternatively, as the referee suggested, we can use an
explicit description of the simple functor S}’L. For any finite group G, we let the vector space
M(G) be equal to L. If U is a right free (H, G)-biset, then we let the map M ([U]):L — L be
equal to multiplication by |U/ G|, where |U/G| denotes the number of G-orbits on U. Then M
becomes an inflation functor, because if V is a right free (K, H)-biset, then [(V xgyg U)/G| =
|V/H||U/G]|. Now one can see easily, for example by using 3.6, that M is the simple inflation
functor S},]L' Therefore G € x impliesthat G=1. O

Theorem 3.10. Let 1L be of characteristic 0. Then, any simple inflation functor S}_I vy 1S isomor-
phic to Sy}, as Mackey functors.

Proof. Proposition 3.8 implies that SiH’V has a unique minimal Mackey subfunctor isomorphic

to Siy /. As Mackey functors over L are semisimple from 3.9, we must have S;I v =nSp, for
some natural number n. Evaluation at H shows thatn =1. O
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Proposition 3.8 gives some information about restriction of a functor to a nonfull subcategory
of its domain category. The next result shows that restriction to full subcategories is not interest-
ing. The same result for functors from arbitrary categories (satisfying some finiteness conditions)
to the category of left R-modules can be found in Webb [9]. We give its easy justification.

Remark 3.11. Let ) C x be families of finite groups satisfying appropriate conditions given in
Section 2. Let SI)_(I v be afunctor (i.e., any of biset, inflation, or Mackey) on . Then its restriction

¢Xm S5y to the family ) is Sg,v if H €9 and 0 otherwise.

Proof. If i% S fl’v is nonzero then there is a G € ) so that S 1X1,V(G) is nonzero, in particular H

is isomorphic to a section (to a subgroup in Mackey functor case) of G. Conditions on %) imply
then that H € ). Let H € 2). Since morphism sets are the same for the categories with respective
objects elements of x and of ), it is clear that S IX{ v satisfies the conditions in 3.6 as a functor

on ¥) because, being simple, it satisfies them as a functor on . Thus LX@ S I); v = SIQ:I) y. O

We close this section by giving further applications of the general results obtained in the first
part. However, we will not make use of the following result throughout the paper.

Proposition 3.12.

(1) Any simple biset functor SIb{,V has a unique maximal inflation subfunctor M. Moreover
b ~ (i
Spv/M=Syy.
(2) (Referee) Let V be a simple L Out(H)-module and H be any finite abelian group. Then the
biset functor LEI’V has a unique maximal inflation subfunctor M. Moreover L?{,V /M=

i
Sy

Proof. (1) Let S = S}}’V, L= LZ,V, and J = JI?I,V‘ We will show that S is generated by S(H)

as an inflation functor. Take any finite group G. By 2.5, S = L/J and the ideal / 13 annihilates
S(H)=V.Thus forany T < G x H with |q(T)| < |H| we have

[(G x H)/T] ®gndymy V S J(G) sothat S([(G x H)/T])(S(H)) =0,

see also Bouc [3]. Since |¢(T)| = |H| implies that k(T) = 1, if |g(T)| = |H| then [(G X
H)/T] € Hom;(H, G). As S is a simple biset functor, from 3.6 § is generated by S(H) as a
biset functor. Hence,

SG)= Y S((GxH)/T])(SH))= > S([(G x H)/T])(S(H)).

T<GxH T<GxH: ky(L)=1

Therefore S is generated by S(H) as an inflation functor, thatis § = Imf{’fs( - Now 3.5 implies
that M = Ker;il’i0 is the unique maximal inflation subfunctor of S, because S(H) is a simple
End; (H)-module. Finally, as M (H) = 0 it is clear that S/M is isomorphic to S}{’V.

2)Let L = L?I’V. We will first show that L is generated by L(H) as an inflation functor. For
this, we will use a method suggested by the referee which uses the argument of Bouc—Thévenaz
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[5, (9.1) Lemma]. Take any finite group G. If T < G x H, and if Q = q(T), we can factorize
(G x H)]T as

(G x H)/T=(G x Q)/A x¢ (Q x H)/B

for suitable subgroups A < G x Q and B < Q x H. Since H is an abelian group, any subquotient
of H is actually a quotient group of H, see [5, (9.1) Lemma]. In particular, there is a subgroup
N of H such that H/N = Q. So there are subgroups C < Q0 x H and D < H x Q, such that

(QxH)/Cxpy (HxQ)/D

is the identity (Q, Q)-biset, where

H/N

(Q x H)/C =Tsof y Defff y, and (H x Q)/D =Tnf}j \ Isop,

Putting this in the previous factorization gives

(Gx H)/TZ((Gx Q)/Axo(QxH)/C)xp ((HxQ)/Dxg(QxH)/B),

and the (H, H) biset on the right will act by O on V, unless Q = H. In the case Q = H, it follows
that k(T) = 1 so that (G x H)/T is aright free (G, H)-biset. This shows that L is generated
by L(H) as an inflation functor, because by the very definition of L, it is generated by L(H) as
a biset functor. 4

Now 3.5 implies that M = Keri,’fo is the unique maximal inflation subfunctor of L, because
L(H) =V is asimple End; (H)-module. Moreover, by [5, (9.1) Lemma], L(X) = 0 if H is not
isomorphic to a section of X. This implies that H is a minimal subgroup of the simple inflation
functor L /M, because M (H) = 0. Hence L /M must be isomorphic to S}LV. O

4. Modules of endomorphisms

In this section we work over a field I, and by a functor we mean any of biset, inflation, or
Mackey. We first give some easy results relating functors and modules of endomorphism algebras
of objects of the domain categories. Our goal is to obtain that the multiplicity of a simple inflation
functor S}“, in KR is equal to the dimension of the K-space

Homg oww) (V. KRr(H) /1] KRg(H))
which follows from part (4) of 4.5.

Remark 4.1. Let G be a finite group, and let §1 and S be two simple functors with S;(G) # 0.
Then:

(1) S1(G) is a simple End(G)-module.

2) W =581(G)then S1 =Lgw/JG.w-

(3) If S1(G) = $2(G) as End(G)-modules then S; = S, as functors.
(4) Let W = S1(G). Then, I annihilates W if and only if S| = Sg.w.
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Proof. (1) By 3.6.

(2) By 2.2 the pair (Lg,—, eg) is an adjoint pair, implying the existence of an L-space iso-
morphism between 0 # Endgnd(g)(W) and Homg (LG, w, S1). So there is a nonzero functor
homomorphism 7 : Lg w — S1 which is necessarily surjective by the simplicity of S;. Then
the kernel of 7 is a maximal subfunctor of Lg w, and so equal to Jg,w because Jg w is the
unique maximal subfunctor of Lg w by 2.3. Hence S1 = Lg,.w/JG,w.

(3) If S1(G) = $2(G) = W then by part (2) both of S; and S, are isomorphic to Lg.w/JG.w,
implying that S| = S,.

(4) If I annihilates W then W is a simple L Out(G)-module, and part (2) and 2.5 imply that
S1=Lgw/Jo.w = Sc,w. If S1 = S, w then by 2.5 I annihilates W. O

The previous result implies

Proposition 4.2. Let G be a finite group. Then the maps Sg v — Su.v(G), Lg.w/Jo.w <~ W
define a bijective correspondence between the isomorphism classes of simple functors whose
evaluations at G are nonzero and the isomorphism classes of simple End(G)-modules.

If Sp.v is a simple functor and E is the End(H )-projective cover of V, then by Bouc [3,
Lemme 2] the functor L g g is the projective cover of Sy, v. Therefore the following is obvious.

Remark 4.3. (See [3, Lemme 2].) Let Sy v be a simple functor and G be a finite group. If
SH,v(G) is nonzero then the End(G)-projective cover P(Sy,v(G)) of Sy, v (G) is isomorphic
to Ly p(v)(G) as End(G)-modules, where P (V) is the End(H )-projective cover of V.

In the next section we will need some results about the multiplicities of simple functors as
composition factors of a given functor M. Since finitely generated modules of finite dimensional
algebras have composition series of finite length whose composition factors are unique up to
isomorphism and ordering, to guarantee the same for functors we will assume in the rest of this
section that functors are defined on a finite family of x of finite groups satisfying the conditions
given in the last paragraph of Section 2.

We first make an easy remark.

Remark 4.4. Let IL be algebraically closed. Suppose that A is a finite dimensional semisimple
L-algebra admitting a direct sum decomposition A = B @ [ where [ is a two sided ideal of A and
B is a unital subalgebra of A. Let V be a simple B-module (so we may regard V as an A-module
by putting /V = 0). Then, for any finitely generated A-module § the multiplicity of V in S as an
A-module composition factor is equal to dimy, Homp(V, S/IS).

Proof. This is obvious, because both of A and B are finite dimensional semisimple L-algebras,
and /V=0. O

By the multiplicity of S in M we mean the multiplicity of S in M as a composition factor
of M. Part (4) is the only part of the following result that we will use. For completeness we write
down all implications.

Proposition 4.5. Let 1L be algebraically closed and let M be a functor such that M (X) is a finite
dimensional LL-space for all X in .
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(1) Given a simple functor Sg.v, the following numbers are equal:
(a) The multiplicity of Sy v in M as functors.
(b) The multiplicity of V in M (H) as End(H)-modules.
(c) dimy, Homgng(g)(P(V), M(H)) where P (V) is the End(H )-projective cover of V.
(2) Assume that 1L is of characteristic 0. If H is a cyclic group and M is a biset functor, then for
any simple . Out(H )-module V the following numbers are equal:
(a) The multiplicity of S}’I’V in M as biset functors.
(b) The multiplicity of V in M(H)/Ifbl M (H) as IL.Out(H)-modules.
() dimg, Homy, oumy(V, M(H)/15; M(H)).
(3) Assume that 1L is of characteristic 0. If M is a Mackey functor, then for any simple Mackey
functor S?;’V the following numbers are equal:
(a) The multiplicity of S,“}) v in M as Mackey functors.
(b) The multiplicity of V in M(H)/I} M(H) as IL.Out(H)-modules.
(¢) dimg Homy ou(sr(V. M (H)/IF M(H)).
(4) Assume that L is of characteristic 0. If M is an inflation functor, then for any simple inflation
functor S;,’V the following numbers are equal:
(a) The multiplicity of S};”) v in M as Mackey functors.
(b) The multiplicity of V in M(H)/II‘}‘M(H) as ILOut(H)-modules.
(¢) dimg Homy ou(sr(V. M (H)/IF M(H)).
(d) The multiplicity of S}i,v in M as inflation functors.

Proof. Let A be a finite dimensional L-algebra and V be a simple A-module and S be a finitely
generated A-module. It is well known that the multiplicity of V in § as A-modules is equal to
the dimension of Hom4 (P (V), S) where P (V) is the projective cover of V. Since IL Out(H) is
semisimple when L is of characteristic 0, the numbers in (b) and (c) are equal in all of (1)—(4).

If P(V) is the End(H )-projective cover of V then by 2.2 the functor L y p(v) is the projective
cover of Sy v as functors on x. So the multiplicity of Sy v in M is equal to the dimension
of Homg (L g, p(vy, M) which is isomorphic to the LL-space Homgng(z)(P(V), M(H)) by the
adjointness of the pair (Lg —, em) given in 2.2. This shows that the numbers in (a) and (c) of (1)
are equal.

Moreover End(H) = Ext(H) & Iy and Ext(H) =L Out(H) by 2.4, so that 4.4 is applicable
whenever End(H) is semisimple. If End(H) is semisimple then P(V) = V and 4.4 implies that
the multiplicity of Sy v in M is equal to the dimension of Homy,ouym)(V, M(H)/Ix M(H)).
Using the semisimplicity results given in 3.9 we see that the numbers in (a) and (c) are equal in
all of (2)—(4).

Up to now we finished the proofs of (1)—(3), and showed the equality of numbers in (a)—(c)
of (4).

Given any composition series of M as inflation functors on x. We see from 3.10 that the same
series is also a composition series of M as Mackey functors on x and any simple inflation functor
S;I,V is isomorphic to S}‘}’V as Mackey functors, proving the equality of numbers in (a) and (d)
of (4). O

5. Composition factors of KRy

Throughout this section, I is an algebraically closed field of characteristic p > 0, and K is an
algebraically closed field of characteristic 0.
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Let H < G be finite groups. For FH and FG-modules W and V, we denote by Tg W and
¢g V the FG and FH-modules FG ®@ry W and FG Qg V, respectively. We let Irr(FG) be a
complete set of representatives of the isomorphism classes of simple FG-modules. We write Fg
to indicate the trivial FG-module.

In this section we want to study the composition factors of the modular representation algebra
functor KRF as inflation functors over K, where if G is a finite group then KRp(G) = K ®z
Go(FG) and Go(FG) is the Grothendieck group of finitely generated FG-modules with respect
to exact sequences.

Let G be a finite group. The Grothendieck group Go(FG) of the finitely generated FG-
modules is defined to be a quotient group A/ F where A is the free abelian group freely generated
by symbols (V') for each isomorphism classes of finitely generated FG-modules V, and F is the
subgroup of A generated by all elements of the form (V) — (V') — (V") arising from the short
exact sequences of FG-modules 0 — V' — V — V” — 0. If we write [V] for the image of
(V)e Ain A/F, we have

GoFG)= @ zIV] and KRp(G)= P KIVI.
Vel (FG) Velr(FG)

Let G and H be finite groups. Any (G, H)-biset S gives an (FG, FH)-bimodule FS, and
so induces a functor FS Qry — :FH-Mod — FG-Mod. For each (G, H)-biset S such that the
functor FS @y — is exact (equivalently, the right FH-module FSry is projective), S induces
an obvious map

KRp([S]) :KRr(H) - KRp(G), [W]r [FSQry W].

With these maps KR becomes a functor from the subcategory of the biset category with mor-
phisms from H to G are the K-span of [S] where S is any (G, H)-biset with the property that
FSry is projective to the category of K-modules.

We see that for the four type of basic bisets

Ind%, Res¥, Infg /n» and Isog/,
where H < G N, and G’ = G, the right modules
FGry, FGrg, F(G/N)r/n), and FGEE‘G

are all free (hence projective). While for Defg /N> We see that F(G/N)rg is projective if and
only if p does not divide the order of N.
Therefore KRp has a natural inflation functor structure over K with the following maps:

KRr(Ind$) : KRp(H) — KRp(G), [W]+ [1% W].

KRr(Res%) : KRr(G) — KRr(H), [V]— [1G V1.

KRp(Inf§ n):KR5(G/N) - KRz (G), [U] [Inf§ /n Ul, where Infé /x U ="U with the
G-action given by gu = (gN)u.

KRr(Is0g (9)) : KRp(G) — KRy(G'), [U] + [1s0% (9)U], where Iso& (9)U = U with
G’-action given by g'u = ¢~ (g")u.
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We finally remind the reader that both of Go(IFG) and K'Rr(G) are commutative algebras
with product [V1][V2] = [V1 ®F V2] and with the unity [Fg]. For simplicity we write 1 instead
of KRr(y) where ¢ is any of Ind, Res, Inf, or Iso.

We begin with an easy consequence of induction theorems.

Lemma 5.1. Let G be a finite group and M be a Mackey subfunctor of KRy. If M(H) =
KRr(H) for all cyclic p’-subgroups H of G then M(G) = KRp(G).

Proof. By Artin’s induction theorem

KR (G) =Y Ind§; KRp(H)
H

where H ranges over all cyclic p’-subgroups of G, see Benson [2, Theorem 5.6.1, p. 172]. This
proves the result. O

From now on in this section, x will denote a finite family of finite groups such that no two
groups in x are isomorphic and that if X in x then any section of X is isomorphic to a group in .
We will study KR as an inflation functor on x and write KR% to stress that. In this situation
KRﬁé may be regarded as a module of a finite dimensional K-algebra, see the last paragraph of
Section 2. Since the coordinate module K’Rr(G) at any finite group G is a finite dimensional
K-space, it follows that KRE{ admits a composition series (of finite length), as inflation functors
on y, whose factors are unique up to isomorphism and ordering.

‘We now observe that minimal subgroups of the inflation functor composition factors of KR%
are among the cyclic p’-groups in x.

Proposition 5.2. If S}_I v Is a composition factor of KRH{E as inflation functors then H is a cyclic
p’-group in x.

Proof. Suppose that S;I,V is a composition factor of KRE)E as inflation functors on x. There are
inflation subfunctors N < M of KR])F( such that M /N is isomorphic to § ;”, Then 3.10 implies
that N < M are Mackey subfunctors of KR% such that M /N is isomorphic to Sg’v. By 3.9 the
functor KR% is a semisimple Mackey functor on x over K, because K is of characteristic 0.
Consequently, there must exist a Mackey subfunctor 7' of KRﬁf- such that KRﬁf- /T is isomorphic
to Spy - In particular T is a proper Mackey subfunctor of KR%.

Let 9) be the family consisting of all cyclic p’-groups in . If H is not a cyclic p’-group then

H ¢ %) and 3.11 implies that % (KR%/T)=0. Thus
X _ X X
Iy T = 1y KRf,

implying that T (H) = KR[’;(H) for every group H in ). Then by 5.1 we get T (G) = KRH{S (G)
for every group G in x, a contradiction because T is a proper Mackey subfunctor of KR%. |

We now calculate the multiplicities in KR])F( of simple inflation functors whose minimal sub-
groups are cyclic g-groups where ¢ is a prime different from p.
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Lemma 5.3. Let G be cyclic q-group in x where q is a prime different from p. For any simple
K Out(G)-module V, the multiplicity of the simple inflation functor SE},V in KR])BE is equal to 1.

Proof. The dimension of the K-space Homg out(G)(V, KRr(G)/I5KRr(G)) is the required
multiplicity by part (4) of 4.5. We will show that

KRy (G)/IFKRE(G) = KOut(G)

as KOut(G)-modules. This shows that the required multiplicity is 1, because Out(G) is abelian
and V is one dimensional.

If G=1then V=K, Endi(G) =K, P(V) =V, and KRr(G) =K, and in this case part (1)
of 4.5 implies that the multiplicity of S},K in KRF is 1.

We first set up our notations as follows:

G = (x), H=(x7) and |G| = q" for some natural number n > 1 (the case n = 0 was treated
above).

For any integer m, we denote by m,, the highest power of g dividing m. That is g™ divides
m but g"a+! does not divide m.

Out(G)=1{6: 1=1,...,q9", 1, =0}, where 6, : x > x!,

¢ is a primitive ¢"th root of unity in I (exists because g # p).

Irr(FG) = (W1, ..., Wyn} and Irr(FH) = {Ut,...,Upn-1} where W; = Fw; and U; = Fu;
with actions xw; = e'w; and x%u j= g9y j- For any natural number m, by W,, (respectively
Uy,) we mean the module W; (respectively U;) where i (respectively j) is the unique number in
{1,...,q"} (respectively in {1, ..., ¢""'}) with m =i mod ¢" (respectively m = j mod ¢"~1).

We note that 6; € Out(G) acts on KRpr(G) as Ol_l[Wi] = [W;;] because G acts on the FG-
module Is0% (6, Y W; = W; by xw; = 6;(x)w; = x'w; = el wy;.

For convenience we divide the proof into several parts.

(A) Let ¢ :KRp(G) — KOut(G) be the map given by [W;] — 9;1 ifi; =0, and [W;] — 0
otherwise. Then ¢ is a K Out(G)-module epimorphism.

Proof of (A). It is clear that ¢ is a surjective K-linear map. Let 6; € Out(G). As [, =0, (il), =
ig.If iy # 0, then

¢ (6, IWil) = o ((Wirl) =0=6,"'0=06,"9(IW:]).
If i; =0, then
o0 Wil) = o (IWal) =0, =670, =07 p(IWi1).
Hence ¢ is a K Out(G)-module epimorphism. O
(B) Ker¢ is a permutation K Out(G)-module with permutation basis
X={Wil:i=1,....q4", ig #0}.

If we let X; = {[W;] € X: iy =1}, then X1, ..., X, are the Out(G)-orbits on X, and [W,]
is an element of X;, whose Out(G)-stabilizer is the subgroup S; = {6;: I =1 mod ¢"'}.
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Proof of (B). By the definition of ¢, it is clear that X is a K-basis of Ker¢ which is obviously
permuted by Out(G). We note that ; € S; if and only if 6[1 [Wyr] = [Wyr], equivalently [W,] =
[Wy1.ie., ¢'l =¢" mod ¢". Since [, = 0, we see that S; is the desired subgroup. Let [W;] € X;.
Then i, =1t and so i = q's for some natural number s with sq = 0. Hence [W;] = 95_1[qu],
implying that Out(G) acts on X, transitively. O

©) IFKRr(G) = Indf, KRr(H).

Proof of (C). If [(G x G)/L] € I}, we then may write
(GxG)/L= Indg Iso§ Resg
for some proper subgroup K = p1(L) of G, see Section 2. It is clear that the maps
Res? :KRp(G) - KRp(K) and Isok :KRp(K) — KRp(K)

are surjective and bijective, respectively (even for any finite abelian group G and any finite
group K). Consequently

[(G x G)/L]KRr(G) = Ind§ KRz (K).

Finally from the relation Ind, Ind,’g = Ind§ , we see that ITKRy(G) = Ind§; KRy(H) be-
cause H is the unique maximal subgroup of G. O

(D) IFKRF(G) is a permutation K Out(G)-module with permutation basis
Y ={Ind§[U;]: j=1,....¢" " '}.

If we let Y¥; = {Indg[Uj]: Jg =1t —1}, then Y1,..., Y, are the Out(G)-orbits on Y, and
(U1 is an element of Y;, whose Out(G)-stabilizer is the subgroup 7; = {6; € Out(G): [ =
1 mod ¢"'}.

Proof of (D). It is clear that Indg :KRp(H) — KRp(G) is injective. Therefore Y is a K-
basis of I KRpr(G). We note that if §; € Out(G) then its restriction 6|y to H is an element
of Out(H). Since

6, Ind[U;]=Tso (6, ") Ind§[U;1 = Ind§ Isoff (6, '] ,,)[U;1 = Ind; [U 11,

we see that Out(G) permutes Y. Now ¢, € T; if and only if 6, Ind% [U,-1] = Ind§ [U 1],
equivalently Indg (U g1 1= Indg [U g ]. Then using the injectivity of Ind%, we see that 0; € T}
if and only if ¢'~' = ¢'~! mod ¢"~'. Since I, =0, the stabilizer of [U,-1] is the desired
subgroup 7;. Let Indg[Uj] €Y. Then j, =t —1andso j = q’_ls for some s with s, = 0.
Hence Indg[U il= 9;1 Indg[qu—l], implying that Out(G) acts on Y, transitively. O
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We have now accumulated all the information necessary to complete the proof. From (B)
and (D) the subgroups S; and T; are equal forallt =1, ..., n and so we have

n n
Kerg = (P Tg“‘(6> Ks, =P T%“W Kz, = IMKRF(G)
t=1 t=1

as KOut(G)-modules. (A) gives that KRr(G)/ Ker ¢ = KOut(G) as KOut(G)-modules. Then
semisimplicity of the K Out(G)-module KRpr(G) implies that

KRr(G)/IFKRr(G) ZKOut(G)
as K Out(G)-modules, finishing the proof. O

Let A and B be finite dimensional [L-algebras where L is an algebraically closed field. If V is
an A-module and W is a B-module, then V ®p, W becomes an A ®j, B-module with the action
(a®b)(v®w) =av®bw. Moreover Irr(A ®1, B) is the set consisting of all elements V ®, W
where V € Irr(A) and W € Irr(B). If we assume that both of A and B are semisimple, then by
the distributivity of ®1, over @ we easily see that the multiplicity of V ®, W in M ®1, N is equal
to the product of the multiplicities of V in M and W in N, where V € Irr(A), W € Irr(B), and
M and N are modules for A and B respectively.

We now give an application of the above facts. Let H and K be two groups of coprime orders.
Since any subgroup X of H x K is of the form X# x XX for some X < H and XX < K, any
element

[(HXK)X(HXK)

2 i|eEndm(HxK)

is of the form

Ind5 <X ISO}Q)((p) RengK = Indg,ffPK ISOZZigIZ (o x %) Resg,foK

where P = pi(L) and Q = p,(L) are isomorphic groups, and ¢ = ¢ x ¢X with ¢ and X

are the respective restrictions of ¢ to O and QX (as |H| and |K| are coprime, p(Q) = P#
and ¢(QX) = PX for any isomorphism ¢ : Q — P). Consequently, the map

R S R xS
(Indka1 ISOR; () ResRIZIZ) QK (Indf1 IsoS; B) Resfz) > IndRIZIIXX@1 IsoRiisé (. x B) Resgfxﬁz

gives a K-algebra isomorphism
End (H) ®k Endy (K) — Endy, (H x K).
Moreover this K-algebra isomorphism transports KRr(H) ®x KRr(K) to KRr(H x K), be-

cause Irr(IF(H x K)) consists of all elements of the form V ®r W where V and W range in the
sets Irr(FH) and Irr(FK), respectively.
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Lemma 5.4. Let H and K be two groups of coprime orders. Suppose that V and W are simple
modules of KOut(H) and KOut(K), respectively. Then, the multiplicity of the simple inflation
functor Sy, K.vexw KR% is equal to the product of the multiplicities of the simple inflation

i i . X
functors Sy, and Sy v, in KRg.

Proof. By part (4) of 4.5, the multiplicity of any simple inflation functor Sé(’ y in KRF is
equal to the multiplicity of the simple Mackey functor S}}‘)U in KRy, which is then equal to
the multiplicity of U in KRy (X) as Endy, (X)-modules by part (1) of 4.5. Since Endy,, (X) is a
semisimple K-algebra by 3.9, the result follows by the facts given above with X = H x K and
U=VexW. O

We now state the main result of this section.

Theorem 5.5. The composition factors of KR% as inflation functors on y are precisely the simple
inflation functors S‘C v» where C ranges over cyclic p'-groups in x and V ranges over elements
in Irr(KOut(C)). Moreover the multiplicity of each composition factor is 1.

Proof. Follows by 5.2-5.4. O
6. Subfunctors of KRy

In this section, by a functor we mean an inflation functor, and we assume the fields F and K
as in the previous section. We want to find a filtration of KRp.
We begin with a simple observation about the evaluations of subfunctors of KRp.

Remark 6.1. Let M be a subfunctor of KRp. Then the following are equivalent:

(1) M(P) # 0 for some finite p-group P.
(2) M(P) # 0 for every finite p-group P.
(3) [Fg] € M(G) for every finite group G.
(4) M(G) # 0 for every finite group G.

Proof. For any finite p-group P, it is clear that KRy(P) = K[Fp]. Then using the inclu-
sions Res” M(P) € M(1), Ind” M(1) € M(P), and Infg/GIsolG/G M(1) € M(G), the result
follows. O

For any natural number # and any finite group G, we define a subset K,,(G) of KRr(G) by:

Kn(G) = ") Ker(Resg : KRp(G) — KRp(C))
C

where C ranges over all cyclic subgroups of G of order dividing 7.

Lemma 6.2. K, = Ker]lézz(])F * \here C,, is any cyclic group of order n. In particular, K, is a

subfunctor of KRp.
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Proof. For any finite group G,
KRp,i .
Kerg,0'(G)=" (] Ker(KR#([(Ca x G)/L]):KR#(G) > KRy(Cp)),
L<4CpxG: ka(L)=1

see Section 3.1. If L < C,, x G with k(L) = 1 then [(C,, x G)/L] is of the form

G oepi(D) P L) o G
Ind oy Inf ) 1) kg ) 80,y ReS ) -

Then from py(L) = p1(L)/ ki1 (L) we see that pp(L) is a cyclic subgroup of G of order divid-
ing n. Conversely, if C is a cyclic subgroup of G of order dividing n, then C,, has a subgroup pi
isomorphic to C such that

C P1 G
Ind;" Iso. Res¢

is of the form [(C, x G)/M] with k(M) = 1. Now we notice that the maps Indg:’(L),
IaniEIL‘g/kl (L) and IsoZ;EIL‘;/k' @) are all injective so that

Ker(KRz([(Ca x G)/L])) =KerRes},,

Finally, as Ker RengC = KerResg, for any g € G, we have

Kerg &"'(G) = [ Ker(Resg : KR(G) — KRz (C))
C

where C ranges over all cyclic subgroups of G of order dividing n. 0O

Lemma 6.3. Let n and m be two p'-numbers. If C,, is a cyclic group of order m, then
dimg K, (Cy,) = m — (n, m) where (n, m) is the greatest common divisor of n and m.

Proof. For X <Y < C,,, it is clear from the relation Resg’" = Resf( Resg'" that KerResg"’ -
Ker Resg'". Therefore

Ku(Cy) = Ker(ResS)" : KRp(Cp) — KRy (H))

where H is the unique maximal subgroup of C,, of order dividing n. Thus |H| = (n, m). Since
Resg'" is surjective, dimg K, (Cy,) = dimg KRp(C,,) — dimg KRp(H) which is equal to m —
(n,m). O

We now study the subfunctor K.
Lemma 6.4. Let M be a subfunctor of KRy and G be a finite group. Then:

(1) K1(G) is of codimension 1 in KRp(G).

2) K1(G)=0ifand only if G is a p-group.
3) M(1)=0ifand only if M < K.

@) M(1)#0ifand only if M + K| = KRp.
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Proof. (1) Because Res? is surjective.

(2) Part (1) implies that K1(G) = 0 if and only if dimxg KRr(G) = 1, which is equivalent to
|Irr(FG)| = 1. This proves the result.

(3) If M (1) = 0 then, for any finite group G, ReslG M(G) € M(1) =0 implying that M (G) <
KerRes? = K1(G).

(4) Suppose that M (1) # 0. Take any finite group G. By 6.1, [Fg] € M(G). It is clear that
[Fg] is not in K{(G). So M(G) + K1(G) > K{(G). Then by part (1), M(G) + K1(G) =
KRr(G). O

Proposition 6.5. The functor K is the unique maximal subfunctor of KRy such that KRy /K1
is isomorphic to S} .

Proof. K is a maximal subfunctor of KRF by 6.4. As K{(1) =0 # KRp(1), the simple quo-
tient KRy /K| must be isomorphic to S} K-

Suppose that M is a maximal subfunctor of KRy such that KRp/M = S} k- Then M (1) =0
implying by 6.4 that M < K;.SoM =K;. O

Corollary 6.6.

(1) If M is a minimal subfunctor of KRy then M (1) =0 so that M < K. In particular KRy is
not semisimple. ‘

(2) Let N < M be subfunctors of KRy. Then, M/N = S| i if and only if M(1) # 0 and M N
Ki=N.

(3) K intersects every nonzero subfunctor of KRy nontrivially.

Proof. (1) Assume that M (1) £ 0. Then M = S},K. Let G be any finite group. Since [F] €
M(1), it follows that [FG] = [Tf F] e Ind? M(1) € M(G). Moreover [Fg] € M(G) by 6.1.
But 6.5 implies that dimg M (G) = 1. Therefore [FG] = [F] implying that G = 1.
(2) Suppose that M/N = S},K. Then M (1) # 0 and N (1) = 0. Hence, 6.4 implies that N <
MNK; <M and M + K1 = KRp. Consequently, by 6.5 we have
Si,]K =KRr/Ki=M+K1)/K1 =M/(MNKy).

This shows that N = M N K.
Suppose that M (1) %0 and M N K1 = N. Then by 6.4 and 6.5,

M/N=E=M/MNK)=EM+K)/Ki =KRp/K| = S}’K.
(3) Let M be a nonzero subfunctor of KR such that M N K| = 0. Then
MZ=M/(MNK)=(M+K)/K =KRp/K1 =S} g

by 6.4 and 6.5. So M is a minimal subfunctor of KR, and then part (1) shows that M < K.
Thus M=MNK;=0. O

We next study the subfunctors K, for any p’-number n. But we first need a result about the
dimensions of simple functors.
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Remark 6.7. Let C;, and C,, be cyclic groups of respective orders n and m for some natural
numbers n and m. If V is a simple K Out(C,)-module then dimg Slc,l,v(cm) isequal to 1 if n
divides m and O otherwise.

Proof. By Bouc [3], it is easy to see that the required dimension is the rank of a row matrix
over K which contains a nonzero entry if and only if n divides m. Alternatively, one may use the
formulas for the evaluations of simple inflation functors (or of simple (global) Mackey functors
by 3.10 and 3.9) given in Webb [7] to deduce the result. O

Proposition 6.8. Let n be a p’-number. Then the composition factors of KRr/ K, are precisely
the simple functors SiC’V where C ranges over all nonisomorphic cyclic groups of order divid-
ing n and V ranges over all nonisomorphic simple K Out(C)-modules. Moreover the multiplicity
of each composition factor is 1.

Proof. For any natural number m we denote by C,, a cyclic group of order m. Using 6.3 we see
that if m is a p’-number, then K, (C,;) = 0 if and only if m divides n. Therefore, if m divides n
then K, has no composition factor whose minimal subgroup is C,,. Then 5.5 implies that each
element of the set

& ={S¢,.v: meN, mdividesn, V € Irr(KOut(Cp))}

is a composition factor of KR/ K, with multiplicity equal to 1.

We will show that there is no other composition factor of KRy/K,. Suppose that SiC,‘W
is a composition factor of KRp/K,. By 5.5 we may assume that r is a p’-number so
that dimg KRr(C,) = r. Then from 6.7 the contribution of the composition factors in G to
dimg (KRr/K,)(C;) is equal to

d="Y |KOut(Cp)|

where m ranges over all natural numbers dividing both of n and r. Thus
d=Y ¢(m)
m

where m ranges over all natural numbers dividing the greatest common divisor (n,7) of n and r,
and ¢ is the Euler’s totient function.. Now, dimg (KRr/K,)(Cy) = (n,r) by 6.3 and d = (n,r)
by Gauss’ theorem. Consequently, Slc,,W must belong to the set S. O

The following is an immediate consequences of the previous result. Note that K,,,, < K, for
any natural numbers n and m.

Corollary 6.9. Let n and m be two p’-numbers. Then the composition factors of K, /Kum are
precisely the simple functors S ‘C v Where C ranges over all nonisomorphic cyclic groups of order
dividing nm but not dividing n, and V ranges over all nonisomorphic simple K Out(C)-modules.
Moreover the multiplicity of each composition factor is 1.
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The previous result suggests to define the following subfunctor of KRy. For any natural num-
ber n we define

Fn:mKd
d

where d ranges over all natural numbers less than n and dividing 7.
It is clear that F;, > K, so that it deserves study only when F,, # K,,.

Remark 6.10. Let M be a subfunctor of KRp. Then, M < K, if and only if M(C,) = 0 where
C, is a cyclic group of order n.

Proof. Definition of K,, implies that K,,(C,) = 0. So if M < K, then M(C,,) = 0. Conversely,

if M(C,) = 0 then it follows by 3.1 that M is a subfunctor of Kerﬂé?zg ' and hence by 6.2 a

subfunctor of K,,. O
Lemma 6.11. Let n be a p'-number. Then F,, # K,,.

Proof. By 6.10, F,, = K, if and only if F, (C,) = 0 where, for any natural number m, we denote
by C,, acyclic group of order m. By the definition of F,, and by the relation Resf( Resg” = Resg“;” ,
we may write

Fu(Cp) =) Ker(Res¢” : KRy (C) — KRp(C))
C

where C ranges over all maximal subgroups of C,,. Letn = p‘f‘ ... p¥ be the prime factorization
of n, where p;’s are distinct primes and ¢; > 1. As maximal subgroups of cyclic groups must
have prime index,

.
Fa(Cy) =[] Ker(Resg”

¢, KRe(Cy) > KRz (Cuyp, ).

s=1

By the identification given after 5.3 (i.e., using the isomorphism KRr(A x B) = KRr(A) @k
KRr(B) for two groups A and B of coprime orders), if we put A; = Cpaj forall j=1,2,...,r
j

we have

r r r
Cn Aj
Rescn/pi = @iKReSHﬁ' .@KKRF(AJ) — @KKRF(H]')
J= j= Jj=

where H; = A if j#i and H; = Cp_a[-—l. Since all the maps Res?li except j =i are identities,

KerRes!, =KRr(A)) ®k - @x KerResy; @x - - ®x KRr(A,).
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Therefore
,
C,le
Fa(Co) = QuKer(Resc” | (KRp(Cp) = KRa(C o) ).
s=1 rs° '

As the maps Res)C(” are surjective for all subgroups X, we see that

r

dimg Fo(Co) = [(p& — p2 ") =9 (n)

s=1

where ¢ is the Euler’s function. In particular F,,(C,) #0. O
By the definition of F;, and 6.9, the following is obvious.

Corollary 6.12. Let C be a cyclic group whose order is a p’-number n. Then the composition
factors of F,,/ K, are precisely the simple functors SIC,V where V ranges over all nonisomorphic
simple K Out(C)-modules. Moreover the multiplicity of each composition factor is 1.

We will prove that the functors F,/K,, are semisimple for any p’-number n. We will make use
of 3.7 in our proof. For this reason we first give a result stating that the functors F, /K, satisfy
some of the conditions of 3.7.

Lemma 6.13. Let n be a p'-number and C,, be a cyclic group of order n. Then:

(1) 1}, annihilates Fy(C).
2) Kerg/gmt =0,

Proof. (1) Let [(C,, x C,)/L] be in Ién and let x be in F,(C,). We will show that [(C, x
C,)/L]x =0. Then [(C, x Cp)/L] is of the form

IndC" Inf?!

pi/ki C
1k Isoy, Resp;'

where p; = p;i(L), k1 = k1(L), and |g(L)| < n. Therefore p, is a cyclic subgroup of C, of
order less than n and dividing n so that Resc" x = 0 by the definition of F,. Consequently,
I} ¢, Fn(Cn) =0.

(2) Using the properties of Ker given in 3.1, we see that

F/K i KRrp,i

Ker = Kerg"o /Kn = (Kerg ¢ NFy) /Ky = (Ky O Fy) /Ky =0

KR]F

where we also use Ker =K, from62. O

Proposition 6.14. Let C be a cyclic group whose order is a p'-number n. Then F, /K, is a
semisimple functor such that

F/K= @ Sty

Velrr(K Out(C))
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Proof. We first show that F;,(C) is a semisimple End;(C)-module isomorphic to KOut(C) as
K Out(C)-modules.
By 6.12 we may find a series of functors

Ki=MoCM| CMyC---CMy=F,
such that each quotient is a simple functor whose minimal subgroup is C and that
Irr(KOut(C)) = {(M;41/M;)(C): i =0,...,d — 1}
and d = | Irr(K Out(C))|. By evaluating at C we get the series
0= K,(C)=Mo(C) C M (C) C Ma2(C) C--- CMa(C) = Fp(C)

of End; (C)-modules such that each quotient is a simple End; (C)-module by 4.1. Now by 6.13 the
ideal Ié annihilates F, (C) so that the last series is a composition series of F;(C) as KOut(C)-
modules. Since KOut(C) is semisimple and since Irr(KOut(C)) = {(Mj+1/M;)(C): i =
0,...,d — 1}, it follows that F,,(C) is a semisimple End;(C)-module annihilated by Ié and
F,(C) ZEKO0ut(C) as KOut(C)-modules.

We now show that F,/K, is generated by (F,/K,)(C) as inflation functors. That is

Fu/Kp,i
me'p o) = F,/K,,see3.1.

Let the following series

I

0=XoC X1 C---CXg=F,(C)

be a composition series of F;,(C) as K Out(C)-modules (and hence as End; (C)-modules because
I i annihilates F,(C)). For each i we define a subfunctor N;/K, = ImF”/ Kt of F,/K, (note
that K, (C) = 0) so that by the properties of Im given in 3.1 we have the following series of
functors

K,=NoCNiC---CNygCF,.

If N, is not equal to F,, then the number of composition factors of F, /K, counting with mul-
tiplicities must be larger than d which is impossible by 6.12. Thus Ny = F;,. This proves that

F./K,=Ng/K, = Img’l{pﬁ"c’; as desired.
El/Kn

Up to now we observed that F,/K, = ImC,F,l(é) and Ker/ =0 (by 6.13), and also
that (F,/K,)(C) = F,(C) is a semisimple End; (C)-module. Moreover, any nonzero subfunctor
of F,,/K, must be nonzero at C from 6.12.

Therefore, 3.7 can be applied to deduce that F,/K, is semisimple. The rest follows
by 6.12. O

Fn/Kn

If g is a prime different from p then we see that Fg» = K »—1 for any natural number n. And
using 6.14 we get a series of functors

KRFDK}DKLJDKqZ"'DanD"‘
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such that the quotients are semisimple and

Ko1K = D SE,.v
V elrr(K Out(Cyn))

where C,» is a cyclic group of order ¢".

We want to find series of KRF as above involving the subfunctors K, and F,, whose quotients
are semisimple and cover all composition factors of KRp.

We finish this section by constructing a series of functors

KRFDKlDLlDLzD”-DL‘/D--'

such that the quotients are semisimple and cover all composition factors whose minimal sub-
groups are -groups where 7 is any set of prime numbers not containing p.

Let & = {p1, p2,..., pr} be a set of prime numbers not containing p. For any natural num-
ber j we define

Lo=Ki, Li= () Kp. L= () Kpp, and
1<ii<r I<ii<ia<r
Lj= m Kpill’iz»--Pij'

1< << <r

Theorem 6.15. Let m = {p1, p2, ..., pr} be a set of prime numbers not containing p. Then the
series of functors

KR]FDKlDLlDLzD'--DLjD“'
satisfies:

(1) Lj_1/Lj is a semisimple functor forall j =1,2,....
) L,_l/szEB EB Se.y
C Velr(KOut(C))

where C ranges over all nonisomorphic cyclic groups of order p;, pi, ... p;i; with 1 <ij <

< <ij<r.

J

Proof. As K; < K for any natural numbers d and s such that s divides d, we see by the defin-
ition of F, that F, =) q K, /4 for any natural number n where g ranges over all prime divisors
of n. This shows that

Lj—1 S FPil Piy--Pi;

forany j=1,2,...and 1 <ij <ip <--- <i; <r. (Note that F, = K.) Consequently, the
natural epimorphism

Fpi,piz»--pij - FPi]Pizn-Pij/KPil Piy-Pi
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induces a monomorphism
Lj—1/(Lj—1N Kmlmz---mj) - lemzu-pij /Kp;lpiz-up,'j~

Then 6.14 implies that

Lj1/(Lj-1 mKPi1Pi2~~~Pij); @ eVsE,v
V elrr(K Out(C))

where ey € {0, 1} and C is a cyclic group of order p;, p;, ... pi;. In particular it is semisimple (if
Nnonzero).
Now the homomorphism

Lj-1— l_[ Lj1/(Lj—1N Kpilpi2~~-17ij)’
1< iy << <r

which is the product of natural epimorphisms
Ljv— Lj—1/(Lj-1 NV Kpy piy...pi))s

has kernel equal to L ;. Therefore, if C,, denotes any cyclic group of order m then we have

- iigedj o
L @ O s
Jj 1/ j Vv Cpl-lp,vz.“piqu

1N << <r VeI Oou(C, gy gy )

where ei}izmi" € {0, 1}. In particular it is semisimple (if nonzero).
To show that each el‘yz'"lj is equal to 1, we simply observe that LJ(CPill’iz---l’ik) =0
for any k < j and 1 <i; <ip < --- <@g < r. This proves by 5.5 that, for any V €
Irr(K Out(C Piy Piy--Di )), the simple functors SCpilmzz-wij .y are composition factors of L;_1/L;
with multiplicity 1. Hence, each e"}'z"'lj isequaltol. O

We have the following immediate consequence. For a group G with |G| = q?‘qg 2.q"
where ¢; are distinct primes and «; > 1 are integers, we put £(G) = ) ;; and n(G) =

{g1.92, -, qs}-
Corollary 6.16. Let x be a finite family of groups satisfying the conditions given in the last

paragraph of Section 2. Let {py, ..., pr} be the union of the sets w(C) and n be the maximum of
the numbers £(C) where C ranges over all cyclic p’-groups in x. Then, the following series

X X X X
KRz DK{ DL DLy D---DLf=0

of KRﬁg as functors on x satisfies that each L}(_l / Lf is semisimple and
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L= @ sl

C Velir(KOut(C))
where C ranges over all cyclic p’-groups in x with £(C) = j.

Our final result of this section is an immediate consequences of 6.15 obtained by letting 7 be
the set of all prime numbers different from p.

In this case it is clear by the definitions of L; which depend on the set 7 that Ly = K;
and L; =", K, where n ranges over all natural p’-numbers whose number of prime divisors
counted with multiplicities is j. Then, the definition of K,, implies that

L;(G)=(")Ker(Res§ : KRr(G) > KRp(X))
X

where X ranges over all cyclic p’-subgroups of G satisfying £(X) < j.
Theorem 6.17. There is a chain of functors
KRp=L_1DLoDL1D---DLjD---

such that ﬂj Lj=0andeach Lj_1/L; is semisimple with
Li-i/Li=P Sty
C,V

where C ranges over all nonisomorphic cyclic p’-groups with £(C) = j and V ranges over all
nonisomorphic simple K Out(C)-modules.

Proof. We observed above that the subfunctors L ; can be defined as in Section 1. Thus all the
assertions except ﬂj L ; = 0 follow immediately from 6.15. We will show that ﬂj L;=0.1Ifitis
nonzero then its evaluation at some finite group G must be nonzero. Then, considering () jLjas
a functor defined on the finite family of groups consisting of representatives of the isomorphism
classes of subquotients of G, we may regard | ;j Lj as a nonzero finite dimensional module
of a finite dimensional K-algebra. See the last paragraph of Section 2. Therefore, if (1) jLjis
nonzero at some finite group G, then it must have a simple section of the form SiC!V where
C is a cyclic p’-group of order dividing |G|. On the other hand, 6.15 (with 7 is the set of all
primes different from p) implies that Sic,v is a summand of L;_1/L; where j = £(C). Since
Li1D>L;>N jLj, it follows that the multiplicity of SiC,V in KRF is greater than or equal
to 2, which is not the case by 5.5. Hence ﬂj L;=0. O

7. Composition factors of KPp
We still assume that the fields K and F satisfy the same conditions of Sections 5 and 6. In this

section we briefly explain that one can use similar arguments to find the composition factors of
the deflation functor K’Pr whose evaluation at any finite group G is K ®7 Ko(G), where Ko(G)
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is the Grothendieck group of finitely generated projective FG-modules. By definition, Ko(G) is
generated by expressions [ P], one for each isomorphism class (P) of finitely generated projective
FG-modules, with relations [P’ @ P”] = [P’] + [P"]. Therefore

KPr(G) = EBK[P]
P

where P ranges over a complete set of isomorphism classes of principal indecomposable FG-
modules.

Let S be a (G, H)-biset. If the functor pgFS ®ry — : FH-Mod — FG-Mod sends projectives
to projectives, then it induces a map

KPr(H) - KPr(G), [Pl [FS®rny Pl
This is equivalent to the projectivity of rgIF'S. For the four type of basic bisets
Indg, Isog,, Defg/N, and Resg,
we see that the left modules
rcFG, rcFG, FG/MHF(G/N) and wyFG

are all free and so projective where H < G = N and G’ = G. While for Infg N> We see that
FGIF(G/N) is projective if and only if p does not divide the order of N. Therefore KPr has a
natural deflation functor structure over K.

Let d be the subcategory of the biset category b with the same objects and with the morphisms

Homy (H, G) = EB R[(G x H)/L].
L<«GxH: ki (L)=1

An R-linear functor from ? to the category of left R-modules is called a deflation functor.
We now exhibit that there is an isomorphism between the deflation functors KPr and KRp.
For a (G, H)-biset S we define the opposite S°P of S as the (H, G)-biset S with the (H, G)-
action given by h.s.g = g~'sh™!. It is clear that the opposites of the bisets Indg, Infg N and

Isog,(w) are the bisets Resg, Defg/N and Isog,(w_l), respectively. See Bouc [3].
Recall that the dual of a biset functor F over a field L is the biset functor F* given on objects
G and on morphisms [S] € Homy (H, G) as follows:

F*(G) =Homy (F(G),L),
F*([S1) :Homy (F(H),L) - Homy,(F(G),L), f> foF([S?]).

Evidently, dual of an inflation functor is a deflation functor.

While V ranges over Irr(IFG), the elements [P(V)] and [V] range over respective K-bases
of KPp(G) and KRp(G) where P(V) is the projective cover of V. Therefore the K-linear
extensions of the maps, whose images at the above basis elements are given as
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r¢ :KPr(G) — KRp(G), [P(V)]+[V],
f& KRp(G) — KRE(G), [VIe [V,

are well-defined K-space isomorphisms, where [V]* is a dual basis element of K’RE(G) that
corresponds the basis element [V] € Itrr(G) of KRp(G).

Theorem 7.1. KPr and KRy, are isomorphic deflation functors.

Proof. For simplicity we write R for KR and P for KPp. Let ¥ be the map from P to R*
whose G-component ¥ is given by f& o rg. By construction, the map ¥ is a K-space iso-
morphism. We will show ¥ is a deflation functor homomorphism by observing that it commutes

with Ind, Iso, Def and Res.
We first note that for any simple FG-module V and any FG-module X, one has

6 ([P(V)])(1X]) = dimp Hompg (P(V), X)

which is the multiplicity of V as a composition factor of X. Moreover, given FG-modules M
and M, we have

P(M & M) = P(M;)® P(M) and
Hompg (M1 @ M>, X) = Homgg (M1, X) ® Hompg (M2, X).
This shows that
'Z¢] ([M]) ([X]) = dimp Hompg (M, X)
for any projective FG-module M and any FG-module X. Recall that the functors
1, 1<, FGF(G/N) ®r@ Ny — and pi/mF(G/N) Qrc —
between the module categories of group algebras (over IF) satisfy that the pairs
(15.1%). (15.1%) and  (r/mF(G/N) ®rc —, #6F(G/N) ®rG/n) —)
are adjoint pairs. Moreover, all of the functors
7 15, and  wG/mF(G/N) ®Fg —

send projectives to projectives.

Now we can see by using the adjointness of the above functors that ¥ commutes with Ind,
Iso, Def, and Res.

Let H < G. Given a projective FH-module W and an FG-module X, we have
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R*(Ind) (i (IW1) (IX1) = (¥ (IW1) 0 R (Res(;)) (1XT)
= (W) (4 X])
= dimp Hompy (W, 15 X)
= dimp Hompg (15 W, X)

(
=wo([1% W])(1X1)
= g (P(Ind7;) ((W1)) (1X1).

Therefore ¥ o P(Ind$) = R*(Ind%) o ¥y
For the above commuting relation we used the adjointness of the pair (Tg, ¢g). Similarly,

one may show by using the adjointness of the pair (|, Tg) that ¥ commutes with Res.
Let N < G. Given a projective FG-module W and an F(G/N)-module X, we have

R (Def ) (¥ (1W1)) (1X1) = (9 (W1) o R (101G 1)) (1)
= w5 (IW))([F(G/N) ®rG/m) X])
= dimp Hompg (W, F(G/N) ®r(G/n) X)
= dimp Homp(g,n) (F(G/N) ®rc W, X)
=¥6/n([F(G/N) ®rc W])([X])
=¥G/N (P(Def(c;/N) (tw1)) (1x7).

Therefore ¥g,y o P(Defg/N) =R* (Defg/N) o Y.

Any group isomorphism v : G — G’ induces an F-algebra isomorphism FG — FG’ so that
Isog/ transposes the module structure via this isomorphism. Therefore the fact that ¥ commutes
with Iso is obvious.

Consequently, ¥ : P — R* is a deflation functor isomorphism. O

Obviously, the proof of 7.1 implies the isomorphism of the deflation functors Ko and G
over Z.

We now explain how to find a filtration of KPr by using 7.1 and 6.17. This will follow from
some basic facts about dual of a vector space, provided we show that similar results hold also for
dual of a biset functor which is the content of the next result.

Let F be a biset functor over a field . and K be a biset subfunctor of F. We define a subset
K of F* given on objects G as follows:

K+ (G)={f e F*(G): f(K(G))=0}.

For any biset functor homomorphism ¢ : F — L we denote by ¢* the map L* — F* whose
G-component ¢f; : L*(G) — F*(G) is given by f + f o ¢¢ forany f € L*(G).

Remark 7.2. Let F be a biset functor, K be a biset subfunctor of F, and ¢ : F — L be a biset
functor homomorphism. Then:
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(1) K+ is a biset subfunctor of F*.
(2) ¢*:L* — F* is a biset functor homomorphism.

Proof. (1) For any morphism [S] € Homg (H, G), we must show that
F*([S1) (K (H)) € K+(G).

We first note that F([S°P])(K(G)) C K(H) because K is a biset subfunctor of F. For this end,
we take any element f of K- (H) and compute that

FH(IS)(NH(K(G)) = f(F([SP])(K(G)) € f(K (1) =0.
Thus F*([S])(f) € K+(G).

(2) We only need to check that ¢* commutes with morphisms of the biset functor category.
Thus, for any morphism [S] € Homy (H, G), we must show that the following maps

95 L*([S]) :Homy (L(H), L) — Homy (F(G),L), f+> foL([S®])r foL([S?])owc.

F*([S1)¢}; :Homy (L(H), L) — Homy (F(G),L), f+> fopy+> fopyoF([S?])
are equal. But this is obvious because

L([s™]) o w6 =m0 F([S])

from the fact that ¢ : F — L is a biset functor homomorphism. O

We note that the definition of K+ may sometimes be confusing because it depends on F
having K as a subfunctor. In the following both of K+ and L depend on F so that L+ < K+
when K < L < F. Note also that for F < F >0 we have 0+ = F* and FL =0.
Lemma 7.3. For any chain K < L < F of biset functors, we have

(L/K)* = K+/L*.

Proof. The inclusion map ¢ : L — F of biset functors induces the surjective biset functor ho-
momorphism ¢*: F* — L* by 7.2 because each component (f; is a surjective L-space map. It is
easy to see that Kert = L*. Consequently,

L*=F*/L*, 5 (xg) < x6 +L(G).
The natural epimorphism 7 : L — L/K of biset functors induces the biset functor monomor-
phism 7*: (L/K)* — L* and its image is equal to K-, by 7.2 and by the similar results in the
context of vector spaces over L. Thus we have the following biset functor monomorphism

(L/K)* — F*/L*

whose image is K+/L+. O
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It is clear now that from the chain of inflation functors given in 6.17 we obtain the following
chain of deflation functors

0=KRg CLY CLyCL{ C--CLj C--CO" =KRj =KPp.

We also see from 7.3 that

Li/Ly =L /L) = (Stv) =EPD(SEv)-

Cc,v cVv

Furthermore, we can also find explicit description of evaluations ¥ ~! (LT)(G) as a sum of im-
ages of Ind by the help of the isomorphism ¥ : P — R* given in the proof of 7.1. Indeed, for
any K-space homomorphisms f:V — W and g: V — W’ between K-spaces W, W’ and V, it is
easy to see that (Ker f)* =Im f* and hence (Ker f N Kerg)’ =Im f* + Img* where f* and
g™ are the usual dual maps. And note that for any biset S, the usual dual map (R([S]))* of the
K-space map R([S]) is equal to R*([S°P]). Now we can easily calculate that

Remark 7.4. Let LL be a field, and §}, be the category of biset functors over L. whose evaluations
at any finite group are finite dimensional over IL. Then the duality F — F* sending a biset functor
to its dual over L induces a category equivalence between the category §, and the opposite
category of §,.

Proof. This is clear from the definition of the dual of a biset functor and by part (2) of 7.2. O
We now explicitly state what we have obtained about the dual of a functor.

Theorem 7.5. Let § (respectively, §;) be the category of inflation (respectively, deflation) func-

tors over K whose evaluations at any finite group are finite dimensional over K. Then, the duality

F — F* sending an inflation functor to its dual over K induces an equivalence of categories be-
tween §; and the opposite category of §y. This equivalence maps KRy to a deflation functor
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isomorphic to K'Pr, and a simple inflation functor of the form S}{ v to a simple deflation functor
of the form S?q v+ Moreover, it reverses filtrations in the sense that if

O0=Xo<X1<X2< - <X =F
is a chain of inflation functors, then
0=Y, <Y1 <Y< - <Yg=F"
is a chain of deflation functors such that
Yio1/Yi = (Xi/Xi-1)*
foralli =1,2,...,n, where Y;(G) ={f € F*(G): f(X;(G)) =0} for any finite group G.

Proof. As the dual of an inflation (respectively, deflation) functor is a deflation (respectively,
inflation) functor, it follows by 7.4 that the duality induces an equivalence of categories between
the desired categories. By 7.1, this equivalence maps KRy to a deflation functor isomorphic
to KPr. Moreover, as the duality is a category equivalence, it maps a simple inflation functor of
the form S}i, v to a simple deflation functor, which must be of the form S?,,V by the definition of
the dual of a functor. The remaining part of the theorem follows easily by 7.2 and 7.3. O

In the rest of this paper, we give a different way of obtaining a filtration of the deflation functor
KPr without using the duality. To be more precise, we demonstrate that one can modify easily
our earlier results to find a filtration of K’Py without using the results 7.1- 7.5.

Proposition 7.6. Over any field 1L we have:

(1) Any simple biset functor SZ’ v has a unique minimal deflation subfunctor M. Moreover M =

S9 ..
HYV
(2) Any simple deflation functor SID_I’V has a unique maximal Mackey subfunctor M. Moreover
S L/ M=ST
Hyv/M = gy

Proof. (1) This is similar to the proof of 3.8. Because, putting S = Sg,v we easily observe that

Kerf_j?o =0.
(2) This part is similar to the proof of part (1) of 3.12. Because we easily see that S = S?,’V is

generated by S(H) as Mackey functor. O

Now part (2) of the previous result and semisimplicity result 3.9 imply that over characteristic
0 fields, any simple deflation functor S?{,V is isomorphic to S} |, as Mackey functors. Conse-
quently we have the following analogy of 4.5.

Proposition 7.7. Assume that 1L is an algebraically closed field of characteristic 0. If M is a
deflation functor whose evaluation at any finite group is finite dimensional over 1L, then for any
simple deflation functor SID_LV the following numbers are equal:
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(a) dimy, Homy, oumy (V, M(H)/I] M (H)).
(b) The multiplicity of SID'{,V in M as deflation functors.

For any finite group G, the Cartan map c: Ko(G) — Go(G) becomes an isomorphism of
abelian groups if we extend scalars to K, see Benson [2, Corollary 5.3.6, p. 165]. Since ¢ com-
mutes with Ind, the following follows easily by 5.1.

Lemma 7.8. Let G be a finite group and M be a Mackey subfunctor of KPr. If M(H) = KPr(H)
for all cyclic p’-subgroups H of G then M (G) = KPpr(G).

We let x be a family of groups satisfying the same conditions of Section 5.

Lemma 7.9. If SID_I v is a composition factor of KPH)T( as deflation functors then H is a cyclic
p’-group in x.

Proof. Using 7.8, it is same as the proof of 5.2. O

It is clear from the proof of 5.4 that 5.4 is still valid for deflation functors and KPr so that it
suffices to compute multiplicities in KPI)F( of simple deflation functors whose minimal subgroups
are cyclic g-groups where ¢ is a prime different from p. As KRp(G) = KPr(G) for any finite
p’-group G, the next result follows by 5.3 and by what we have observed in this section.

Theorem 7.10. The composition factors of KPH),( as deflation functors on x are precisely the
simple deflation functors Sg v» Where C ranges over cyclic p’-groups in x and V ranges over
elements in Irr(KOut(C)). Moreover the multiplicity of each composition factor is 1.

One may also construct some series of KPr using the ideas of Section 6. From now on, a
functor means a deflation functor. We give analogues of some results obtained in Section 6. Since
proofs are parallel to the corresponding proofs we gave in Section 6, we omit the justification of
some results.

For any p’-number n, we define a subset K, of KPPy whose evaluations at a finite group G is
given as follows:

K,(G) =) Indf KPr(C)
C

where C ranges over all cyclic subgroups of G of order dividing n. For any natural number m,
let C,, be a cyclic group of order m.

Remark 7.11.

(1) If n is a p’-number then K, = Imﬂéf]]%’% - In particular, K, is the subfunctor of KPg
generated by KPr(Cy,).

(2) If n and m are p’-numbers then dimg K, (C,,) = (n, m) where (n, m) is the greatest common
divisor of n and m.

For a p’-number n, if d divides n then by the previous result K},(C4) = KPr(Cy4). Then by
counting dimensions we get the following result similar to 6.8.
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Proposition 7.12. Let n be a p’-number. Then the composition factors of K], are precisely the
simple functors Sg’ v Where C ranges over all nonisomorphic cyclic groups of order dividing n
and V ranges over all nonisomorphic simple K Out(C)-modules. Moreover the multiplicity of
each composition factor is 1.

Now for any p’-number n we define the following subfunctor F, of K.
F=2_ K
d

where d ranges over all natural numbers less than n and dividing . We note that, for a subfunctor
M of KPy, K, < M if and only if M (C,) = KPr(Cp,). Therefore, arguing as in the proof of 6.11,
we can show that

,
C as

F(C = 3 (KPe(Cp) @ @xcInde’S | KPo(C ) @k Ok KPH(C o))
s=1 s

/

,,» and

where n = p‘f“ ...pr" is the prime factorization of n. This shows that F, is not equal to K
so we have the following consequence of 7.12.

Corollary 7.13. Let C be a cyclic group whose order is a p’-number n. Then the composition
factors of K,/ F,, are precisely the simple functors Sg,v where V ranges over all nonisomorphic
simple K Out(C)-modules. Moreover the multiplicity of each composition factor is 1.

We next show that K,/ F, is semisimple by using 3.7.
Lemma 7.14. Let n be a p’-number. Then:

D Ign annihilates K] (Cp)/F,(Cp).
(2) K],/ F), is generated by K},(Cy)/F,,(Cy) as deflation functor.

K./F
(3) Kerg!y ™" = 0.

Proof. (1) Let [(C, x C,)/L] € Ig”. Then it is of the form

Cy P1 P2
Indm Isom/k2 Defm/k2

Cl‘l
Res P
where p; = p;i(L), ko = ka(L), and |g(L)| < n. Thus p; is a cyclic subgroup of C,, of order less
than n and dividing n, implying that Ign KPr(Cy) C F,(Cy).

(2) Using the properties of Im given in 3.1 we see that

K, /F,0 _ K, , (ot / Ty
Ime ™ e mrcn = (Imc,,,K;,(c,,) +Fn>/Fn = (K, + F,)/F,=K,/F,
where we also use K, = Imﬂépﬁg’%(c ) from 7.11.

(3) 7.13 implies the existence of a series

F(Cp) =XoC X1 C--- C Xg=K,(Cp)
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of End; (Cp,)-modules such that
Irr(KOut(Cp)) = {Xi41/Xi: i =0,...,d — 1}
and d = |Irr(K Out(C,))|. For each i we define a subfunctor N; of K, containing F,, by setting
N/ = Kerg’l/’, x, By the properties of Ker given in 3.1 we have the following series of functors
F/,CNoCN C---CNys=K,,.

If Np is not equal to F, then the number of composition factors of K, /F, counting with mul-
tiplicities must be greater than d which is not the case by 7.13. Consequently, No = F,,. This
shows by 3.1 that

K/ Fy

0=No/F, =Ker" pc /Fy=Kerg"g". O

Cn, F;(Cp)

Proposition 7.15. Let C be a cyclic group whose order is a p’-number n. Then K, /F, is a
semisimple functor such that

K. /F = EB S2y.
V elrr(K Out(C))

Proof. Since I g annihilates K, (C)/F,(C) by 7.14, it follows from the semisimplicity of
KOut(C) that K/,(C)/F,(C) is a semisimple Endp (C)-module. Now it is clear from 7.14 that
3.7 implies the desired result. O

We can now construct a series of functors

0OCK cLycLycC---CLjcC---CKPp

such that the quotients are semisimple and cover all composition factors whose minimal
subgroups are w-groups where m is any set of prime numbers not containing p. Let m =

{p1, P2, ..., pr} be aset of prime numbers not containing p. For any natural number j we define
/! /o ’ /o /
Ly=Kj, Ly= Z Kl’il’ L= Z Kl’fll’iz’ and
I<i <r I<ii<iasr

r_ /
L] - Z Kpilpizmpij :

1<i Sip << <r

Theorem 7.16. Let 7 = {p1, p2, ..., pr} be a set of prime numbers not containing p. Then the
series of functors

0OCK cLicLyC---CLjC---CKPp
satisfies:

(1) L’J./L’j_1 is a semisimple functor forall j =1,2,....
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I / ~ 0
) L= @D sev
C  Velir(KOut(C))
where C ranges over all nonisomorphic cyclic groups of order pj, pi, ... pi; with 1 <i <
Iy < <ij<r.
Proof. It is clear that K/, < K for any p’-numbers d and s such that d divides s. Thus by the

definition of F, we have F, =Y q K/ /q where ¢ ranges over all prime divisors of n. This shows
that

/ _ /
i1 Z Fpilpiz--»Pij'

1< S <-<ijj<r

. . , / . P
Therefore, each semisimple quotient K Piy Diy- i /F Piy Diy- i embeds into L7 /L’;_;. On the

other hand, 7.12 implies that the composition factors of L’j /L’j_1 have multiplicities all equal

to 1 and are among the simple functors Sg,v where C ranges over all nonisomorphic cyclic
groups of order p;, p;, . -+ Di; with 1 <y <ip <--- <ij <r. Now the result follows by the
above embeddings and by 7.13. O

We finally record the following filtration of K’Pr which is immediate from the previous result.
In the following L’j is the subfunctor given on any finite group G by

L(G) =) Ind§ KPr(X)
X

where X runs over all cyclic p’-subgroups of G with £(X) < j.
Corollary 7.17. There is a chain of functors
0=L_,cLycLicLyc---CcL;C---CKPr

such that y L’j = KPr and each L’j/L’/._1 is a semisimple with
L/l =P sty
c,V

where C ranges over all nonisomorphic cyclic p’-groups with £(C) = j and V ranges over all
nonisomorphic simple K Out(C)-modules.
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