• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      First-principles study of defects and adatoms in silicon carbide honeycomb structures

      Thumbnail
      View / Download
      766.8 Kb
      Author
      Bekaroglu, E.
      Topsakal, M.
      Cahangirov, S.
      Çıracı, Salim
      Date
      2010
      Source Title
      Physical Review B - Condensed Matter and Materials Physics
      Print ISSN
      1098-0121
      Publisher
      The American Physical Society
      Volume
      81
      Issue
      7
      Language
      English
      Type
      Article
      Item Usage Stats
      129
      views
      238
      downloads
      Abstract
      We present a study of mechanical, electronic and magnetic properties of two-dimensional (2D), monolayer of silicon carbide (SiC) in honeycomb structure and its quasi-one-dimensional (quasi-1D) armchair nanoribbons using first-principles plane-wave method. In order to reveal dimensionality effects, a brief study of three-dimensional (3D) bulk and 1D atomic chain of SiC are also included. Calculated bond-lengths, cohesive energies, charge transfers and band gaps display a clear dimensionality effect. The stability analysis based on the calculation of phonon frequencies indicates that 2D SiC monolayer is stable in planar geometry. We found that 2D SiC monolayer in honeycomb structure and its bare and hydrogen passivated nanoribbons are ionic, nonmagnetic, wide band gap semiconductors. The band gap is further increased upon self-energy corrections. The mechanical properties are investigated using the strain energy calculations. The effect of various vacancy defects, adatoms, and substitutional impurities on electronic and magnetic properties in 2D SiC monolayer and in its armchair nanoribbons is also investigated. Some of these vacancy defects and impurities, which are found to influence physical properties and attain magnetic moments, can be used to functionalize SiC honeycomb structures. © 2010 The American Physical Society.
      Permalink
      http://hdl.handle.net/11693/22426
      Published Version (Please cite this version)
      http://dx.doi.org/10.1103/PhysRevB.81.075433
      Collections
      • Department of Physics 2299
      • Institute of Materials Science and Nanotechnology (UNAM) 1775
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy