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We present a study of mechanical, electronic and magnetic properties of two-dimensional �2D�, monolayer
of silicon carbide �SiC� in honeycomb structure and its quasi-one-dimensional �quasi-1D� armchair nanorib-
bons using first-principles plane-wave method. In order to reveal dimensionality effects, a brief study of
three-dimensional �3D� bulk and 1D atomic chain of SiC are also included. Calculated bond-lengths, cohesive
energies, charge transfers and band gaps display a clear dimensionality effect. The stability analysis based on
the calculation of phonon frequencies indicates that 2D SiC monolayer is stable in planar geometry. We found
that 2D SiC monolayer in honeycomb structure and its bare and hydrogen passivated nanoribbons are ionic,
nonmagnetic, wide band gap semiconductors. The band gap is further increased upon self-energy corrections.
The mechanical properties are investigated using the strain energy calculations. The effect of various vacancy
defects, adatoms, and substitutional impurities on electronic and magnetic properties in 2D SiC monolayer and
in its armchair nanoribbons is also investigated. Some of these vacancy defects and impurities, which are found
to influence physical properties and attain magnetic moments, can be used to functionalize SiC honeycomb
structures.

DOI: 10.1103/PhysRevB.81.075433 PACS number�s�: 73.22.�f, 75.75.�c, 63.22.�m

I. INTRODUCTION

Owing to its exceptional thermal and physical properties,1

silicon carbide �SiC� is a material, which is convenient for
high temperature and high power device applications. Be-
cause of its wide band gap, SiC bulk structure has been a
subject of active study in optical and optoelectronic research.
Unlike the polymorphs of carbon, SiC is a polar material. In
spite of the fact that both constituents of SiC are Group IV
elements, charge is transferred from Si to C due to higher
electronegativity of C relative to Si atom.

Bulk SiC has six commonly used stacking configurations
denoted as 3C �zincblende�, 2H �wurtzite�, 4H, 6H, 15R, and
21R. Lubinsky et al.2 reported optical data related with indi-
rect transitions, dielectric function and reflectivity of 3C SiC
using first-principles Hartree-Fock-Slater method. A more
comprehensive study3 using orthogonalized linear combina-
tion of atomic orbitals �OLCAOs� method comprises the cal-
culations of lattice constants, electronic band structure and
optical properties of all six stacking configuration of SiC.

As for SiC in lower dimensionality, SiO2 coated SiC
nanowires4 were synthesized and showed favorable photo-
catalytic behavior. A theoretical work on hydrogen passi-
vated SiC nanowires5 provided the energy bands both using
local density approximation within density functional theory
�DFT� and sp3s� LCAO tight binding �TB� methods. SiC-
ZnS core-shell structures were also fabricated.6 Zincblende
SiC nanoparticles were synthesized by carbothermal reduc-
tion method.7 Band gap of zincblende nanoparticles were
estimated to be around 3 eV from photoluminescence mea-
surements. With a similar carbothermal method,
microribbons8 with widths in the range of 500 nm–5 �m
and thickness of 50–500 nm were synthesized.

SiC is frequently used as a substrate to grow other
materials.9,10 Few layers of graphene was also grown on
SiC.11 SiC clusters �SinCn ,n=1–10� were investigated12 us-

ing DFT. With the aim of developing a material for future
nanoelectronic applications, binding energy, HOMO-LUMO
gap, Mulliken charge, vibrational spectrum and ionization
potential of SinCn clusters are revealed.

Earlier, planar honeycomb structure of graphite was ex-
foliated and its physical properties were analyzed.13–15 While
graphene is a strictly planar crystal, the planar honeycomb
structure of Si is unstable, but it is stabilized through
puckering.16 Since the honeycomb structure is common to
both C and Si, one expects that stable 2D SiC in honeycomb
structure can be synthesized.

In this paper, a comprehensive analysis of the atomic,
electronic and magnetic properties of two-dimensional �2D�
monolayer of SiC honeycomb structure and its bare and hy-
drogen passivated armchair nanoribbons �A-SiCNR� are car-
ried out using first-principles calculations. In spite of the fact
that 2D SiC monolayer is not synthesized yet, this study
demonstrates its stability based on reliable theoretical meth-
ods. Furthermore, various mechanical, electronic, and mag-
netic properties are revealed. We started with the discussion
of three-dimensional �3D� zincblende and wurtzite crystals,
as well as SiC atomic chain as an ultimate one-dimensional
�1D� system; we presented an analysis of optimized atomic
structures with corresponding phonon dispersion curves and
electronic energy band structures and effective charges. Then
we provided an extensive analysis of 2D and quasi-1D �na-
noribbon� SiC in terms of the optimized atomic structures
and their stability, electronic, and magnetic structures. We
revealed elastic constants, such as in-plane stiffness and
Poisson’s ratio. Having obtained the results for 1D, 2D, and
3D structures, we presented a comprehensive discussion of
dimensionality effects. Then we investigated the effect of
vacancy defects �such as Si and C vacancy, Si+C vacancy
and C-Si antisite defect� on the electronic and magnetic
properties of single layer SiC and its armchair nanoribbons.
Furthermore, we showed that SiC can be functionalized
through adsorption of a foreign atom to the surface of 2D
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SiC or through substitution of either C or Si with a foreign
atom. It is revealed that 2D SiC and its ribbons provide un-
usual physical properties, which are absent in 3D SiC crys-
tals. For example, while various allotropic forms of SiC in-
cluding its honeycomb structures are normally nonmagnetic
semiconductors, a Si vacancy gives rise to spin polarization.
Significant variation in the band gap of narrow A-SiCNR’s
with their widths may be crucial in designing optoelectronic
nanodevices.

II. MODEL AND METHODOLOGY

We have performed first-principles plane-wave calcula-
tions within DFT using PAW potentials.17 The exchange-
correlation potential has been approximated by generalized
gradient approximation �GGA� using PW91 �Ref. 18� func-
tional both for spin-polarized and spin-unpolarized cases.
For the sake of comparison, the calculations are also carried
out using different potentials and exchange-correlation ap-
proximations. All structures have been treated within the su-
percell geometry using the periodic boundary conditions. A
plane-wave basis set with kinetic energy cutoff of 500 eV
has been used. A vacuum spacing of 12 Å hinders the inter-
actions between SiC monolayers in adjacent supercells. In
the self-consistent structure optimizations, the Brillouin zone
�BZ� is sampled by, respectively, �5�5�5�, �11�11�1�,
and �11�1�1� special k points for 3D bulk, 2D honey-
comb, and 1D nanoribbons of SiC. Further relaxation is
made with �11�11�11�, �31�31�1�, and �25�1�1�
special k points in order to find the final structure. All atomic
positions and lattice constants are optimized by using the
conjugate gradient method, where the total energy and
atomic forces are minimized. The convergence for energy is
chosen as 10−5 eV between two steps and the maximum
Hellmann-Feynman forces acting on each atom is less than
0.04 eV /Å upon ionic relaxation. The pseudopotentials cor-
responding to four valence electrons of Si �Si:3s23p2� and C
�C:2s22p2� are used. Numerical plane-wave calculations are
performed by using VASP.19,20 Part of the calculations have
also been repeated by using SIESTA �Ref. 21� software. The
cohesive energy of any SiC structure is found as EC
=ET�SiC�−ET�Si�−ET�C� in terms of the optimized total en-
ergy of any SiC structure, and the spin-polarized total ener-
gies of free Si and C atoms, all calculated in the same super-
cell using the same parameters. Phonon calculations were
carried out using PHON program22 implementing force con-
stant method. GW0 calculations23 are again handled by VASP.

III. 1D ATOMIC CHAIN AND 3D BULK CRYSTAL OF
SIC

In this section, we present a brief discussion of 1D SiC
atomic chain and 3D bulk crystal based on our structure op-

timized total energy and phonon spectrum calculations. Stud-
ies on SiC bulk lattice and atomic chains already exist in the
literature.2,3,24 However, our purpose is to carry out calcula-
tions with same parameters as used in 2D monolayer SiC
honeycomb structure and provide a consistent comparison of
dimensionality effects.

A. 1D SiC Chains

Earlier, the first theoretical study of atomic chains of
Groups IV and III-V binary compounds were reported by
Senger et al.24 They examined SiC atomic chain as a func-
tion of lattice parameter and found that the wide zigzag
atomic chain of SiC with bond angle of �147° is energeti-
cally more favorable than the linear and narrow angle zigzag
chains. Present calculations find that the atomic chains of
SiC are nonmagnetic. Calculated structural parameters, cohe-
sive energies, band gap, and phonon modes of linear and
zigzag atomic chains, which are relevant for the present
study are given in Table I. The charge transfer from Si to C
is calculated to be �q=2.28 electrons using the Bader
analysis.25 Phonon modes calculated with force constant
method have imaginary frequencies. In Fig. 1 two acoustical
and two optical branches of linear SiC chain have imaginary
frequencies. Also wide angle zigzag SiC chain has one opti-
cal and one acoustical branch with imaginary frequencies.
These results indicate that free standing SiC chains are not
stable. We note that carbon and BN atomic chains are found
to be stable and have linear structure.24,26,27 Stability of lin-
ear chain structure is assured by � bonding between adjacent
atoms.

B. 3D SiC Crystals

Our work on bulk SiC includes wurtzite �wz� and
zincblende �zb� structures. Atoms in wz- and zb-SiC are
fourfold coordinated through tetrahedrally directed sp3 orbit-
als. Calculated structural parameters, cohesive energies, en-
ergy band structures and phonon modes are given in Fig. 2.
Zincblende SiC structure in Td symmetry has cubic lattice
constants, a1=a2=a3=3.096 Å. Si-C bond distance d is
1.896 Å. Each Si �C� is connected to its four nearest neigh-
bor C �Si�; four Si-C bonds are equal. Charge transfer from
Si to C is �q=2.59 electrons calculated via Bader analysis.25

While the GGA band gap is 1.41 eV, it increases to 2.40 eV
after GW0 corrections. As for wz-SiC crystal, the hexagonal
lattice constants of the optimized structure in equilibrium are
a1=a2=3.091 Å, c /a=1.642. The small deviation of c /a
from the ideal value of 1.633 imposes a slight anisotropy on
the lengths of tetrahedrally directed Si-C bonds. While the
length of three short bonds is 1.893 Å, the fourth bond is

TABLE I. Si-C bond length d, lattice constant a, bond angle �, charge transfer from Si to C �q, band gap
EG, and cohesive energy EC values for two different types of SiC chains.

Type
d

�Å�
a

�Å�
�

�deg.�
�q
�e�

EG

�eV�
EC

�eV�

Linear 1.649 3.298 180 2.28 2.00 8.962

Wide zigzag 1.673 3.268 155.2 2.15 1.18 8.968
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slightly longer and has the length of 1.907 Å. Charge trans-
fer from Si to C is �q=2.63 electrons. The GGA band gap is
2.36 eV, but it increases to 3.32 eV after GW0 correction. The
calculated structural parameters and energy band gaps are in
reasonable agreement with the earlier calculations and ex-
perimental measurements.3,28 In particular, the band gap val-
ues of 2.39 and 3.33 eV for zb and wz SiC, respectively are
in excellent agreement with the present GW0 corrected val-
ues.

The frequencies of phonon modes and their dispersions
are calculated for zb and wz crystals by direct �or force con-
stant� method.22 At long wavelengths near the � point, the
electric field due to dipoles is critical for phonon modes. This
effect lifts the degeneracy between longitudinal and trans-
verse optical modes. However the splitting �known as
LO-TO splitting� cannot be observed with the direct method
used in the present study. Therefore, in Fig. 2 the highest and
second highest optical branches become degenerate at �
point. Present results are in agreement with earlier phonon
calculations.29,30

IV. 2D SIC HONEYCOMB STRUCTURE

Two-dimensional monolayer of SiC hexagonal structure
of SiC is optimized using periodically repeating supercell
having 12 Å spacing between SiC planes. The minimum of
total energy occurred when Si and C atoms are placed in the
same plane forming a honeycomb structure. The magnitude
of the Bravais lattice vectors of the hexagonal lattice is found
to be a1=a2=3.094 Å �see Fig. 3�, and the Si-C bond length
to be d=1.786 Å. The planar structure of 2D SiC is tested
by displacing Si and C atoms arbitrarily from their equilib-
rium positions by 0.5 Å and then reoptimizing the structure.
Upon optimization, the displaced atoms returned to their
original positions in the same plane implying the stability of
planar structure. Further details on the stability of this struc-
ture will be provided with phonon calculations at the end of
this section. Two-dimensional monolayer SiC is found to be
a semiconductor with a band gap of 2.53 eV within GGA.
Furthermore, in Table II, we present lattice constant, bond
length, cohesive energy, energy gap values of 2D SiC mono-
layer calculated with different potentials. Since DFT usually
underestimates the band gap of semiconductors, we also cor-
rected the GGA band gap using GW0 correction and found it
to be 3.90 eV. The charge transfer from Si to C in 2D SiC is
calculated to be �q=2.53 electrons. The Si-C bond length

FIG. 1. �Color online� Atomic structures, electronic energy
bands, and dispersion of phonon modes of linear and wide angle
zigzag SiC atomic chains. EC and EG are cohesive and band gap
energies, respectively. Si and C atoms are shown by blue/large and
brown/small balls, respectively. Zero of the energy is set to the
Fermi energy, EF.
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FIG. 2. �Color online� Optimized atomic structure with relevant
structural parameters, corresponding energy band structure and fre-
quencies of phonon modes of 3D bulk SiC in zincblende and wurtz-
ite structures. Zero of energy of the band structure is set at the
Fermi level, and band gap is shaded.
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and the band gap values in the first row obtained by using
GGA+PAW are in agreement with earlier DFT
calculations.31

In addition to structural and electronic properties, we also
investigated the mechanical properties of 2D SiC.32–34 One
can specify the mechanical properties of SiC honeycomb
sheet in terms of uniaxial strain, �=	c /c, c being the lattice
constant; Poisson’s ratio 
=−�trans /�axial and in-plane stiff-

ness, C= 1
A0

�
�2Es

��2 �. Here A0 is the equilibrium area of the sys-
tem and Es is the strain energy calculated by subtracting the
total energy of the strained system from the equilibrium total
energy. To calculate the elastic constants of monolayer SiC
honeycomb structure we switch to rectangular unit cell and
consider a large �8�4� supercell comprising 32 primitive
unit cells. In the harmonic region Es��� is first calculated on
a 2D grid. The numerical data are then fitted to the expres-
sion, Es=A1�x

2+A2�y
2+A3�x�y; where �x and �y are the small

strains along x and y directions. In the harmonic region, as a
result of the isotropy A1=A2. More details concerning the
calculation of C and 
 can be found in Refs. 33 and 34. The
calculated in-plane stiffness of SiC honeycomb structure is
found to be 166 �J /m2�. This is almost half of the in-plane
stiffness of graphene �namely 335 J /m2�, but more than
twice the in-plane stiffness of silicene �62 J /m2�. Also the
Poisson’s ratio of SiC is calculated to be 0.29. Consequently,
2D SiC monolayer is a stiff material, but less stiff than
graphene and BN having similar honeycomb structures.

Similar to 1D and 3D SiC, frequencies of phonon modes
of and the dispersions ��k� of 2D monolayer of SiC in pla-
nar geometry are calculated using direct method.22 Forces
were found by displacing a single atom in a 7�7�1 super-
cell. We use a small displacement in order to stay in the

harmonic region. We increased default grids used by VASP

until calculations converge. The lowest acoustical mode,
which is called as the out of plane, ZA mode is vulnerable to
instability. In rough meshes this mode gets imaginary fre-
quencies near the � point, but it can be overcome by refining
the mesh along the z axis �perpendicular to plane� as much as
possible. This way, force in that direction is calculated more
rigorously. Since the frequencies of all modes are positive in
BZ, it is concluded that planar, 2D SiC monolayer in honey-
comb structure is stable.

Dimensionality effects

In Table III, we compare the variation in the effective
charge on Si and C atoms, namely ZSi

� and ZC
� , respectively;

charge transfer from Si to C, �q=4−ZSi
� ; Si-C bond length d;

lattice constant; energy band gap, GW0 corrected band gap
and cohesive energy per Si-C, calculated for SiC in different
dimensionalities. It should be noted that the length of Si-C
bonds of 2D SiC honeycomb structure is smaller than that in
the 3D bulk �wz, zb� crystals, but larger than that in zigzag
atomic chains. Here we see that the dimensionality effect is
reflected to the strength of the bonding through spn hybrid-
ization, where n coincides with the dimensionality. While sp2

hybrid orbitals of 2D planar honeycomb structure form
stronger bonds than tetrahedrally coordinated sp3 orbitals of
3D bulk, they are relatively weaker than sp hybrid orbitals of
1D chain. Accordingly, d is shortest in 1D chain, and longest
in 3D zb structures, and is intermediate in 2D monolayer.
The cohesive energy EC increases with dimensionality, since
the number of nearest-neighbors increases. Effective charge
or charge transfer between cation and anion also varies with
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FIG. 3. �Color online� �a� atomic structure, �b� energy band structure, and �c� phonon modes of 2D SiC in honeycomb structure.
Large/blue and small/brown balls indicate Si and C atoms, respectively. The primitive unit cell is delineated. The zero of energy in the band
structure is set to the Fermi level.

TABLE II. Si-C bond length d, lattice constant a, band gap EG, band gap corrected by GW0 EGW0
,

cohesive energy EC values for 2D monolayer of SiC in honeycomb structure calculated with different
potentials.

Potential
d

�Å�
a

�Å�
EG

�eV�
EG�+GW0�

�eV�
Ec

�eV�

PAW+GGA 1.786 3.094 2.530 3.90 11.944

PAW+LDA 1.770 3.070 2.510 13.542

US+GGA 1.776 3.079 2.542 11.973

US+LDA 1.759 3.048 2.532 13.471
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dimensionality. For example, the charge transfer calculated
with Bader analysis increases with increasing dimensionality.
While the energy band gap EG does not show a regular trend
with dimensionality, the band gap of 2D monolayer is wider
than those of 3D crystals.

V. BARE AND HYDROGEN PASSIVATED SIC
NANORIBBONS

In this section, we consider bare and hydrogen passivated
armchair SiC nanoribbons. These nanoribbons are specified
according to their widths specified in terms of N number of
Si-C basis in their unit cells. Hence, A-SiCNR�N� indicates
armchair SiC nanoribbons having N Si-C pairs in their unit
cell. We have analyzed A-SiCNR �both bare and
H-passivated� from N=5 to 21. A-SiCNR’s with odd num-
bered N have reflection symmetry with respect to their axis.
Bare armchair SiC nanoribbons are ferromagnetic in ideal
honeycomb form. However, upon structural relaxation, re-
construction occurs at the edges resulting in a considerable
gain of energy and the structure becomes nonmagnetic.

Band gaps of all A-SiCNR�N� increase by �0.7 eV upon
H saturation of dangling bonds. The Si-H and C-H bonds
formed after hydrogenation have lengths of 1.49 and 1.09 Å,
respectively. The effective charges on Si and C edge atoms
changes after H passivation. While Si-C bonds at the edges
are shorter than the Si-C bonds in 2D SiC monolayer by
0.09 Å, upon H saturation these bonds get slightly longer,
but are still shorter than the regular Si-C bonds by 0.05 Å.
Hence, reconstruction of atomic structure at the edge exists
in each case, but is more pronounced in the bare nanorib-
bons.

Here we consider A-SiCNR�9� as a prototype and exam-
ine its band structure. The bare A-SiCNR�9� is an indirect
band gap semiconductor. Two bands at the conduction band
edge are composed of edge states, which are split due to
edge-edge interactions. These bands are removed upon H
saturation of dangling bonds of atoms at the edges. This
results in a widening of the band gap. As for the other edge
state band, it is located in the valance band. This band is also
removed upon H-saturation, but the valence band edge is not
affected. The band gap of H-saturated A-SiCNR�9� is direct.
Energy bands and band decomposed charge densities are
shown in Fig. 4.

The variation of the energy band gap, EG, of bare and
H-passivated SiC armchair nanoribbons with the width of the

ribbon N are calculated for 5�N�21 as presented in Fig. 5.
For bare A-SiCNR’s, the band gap is relatively smaller due
to edge states as shown in Fig. 4; namely, EG�1.29 eV for
N=5, but increases to �2.4 eV for N=21. Upon H passiva-
tion of the dangling bonds at the edges, the edge states dis-
appear and the band gap increases and gets direct. For N
=5 the direct band gap is around 2.5 eV, but increases with N
and eventually becomes 2.38 eV for N=21. Hypothetically,
the band gap is expected to reach the value of 2D planar SiC
�EG=2.53 eV calculated within GGA�. The main difference
with graphene is that the band gap of bare armchair graphene
nanoribbon decreases with increasing N and eventually van-
ish as N→. Interestingly, H-saturated armchair SiCNRs
with, N−1, N, and N+1, exhibit a family behavior similar to
one revealed in armchair graphene nanoribbons.35 For N
�15 the variation of EG of H-saturated A-SiCNR is not sig-
nificant. However, it should be noted that the band gap varia-
tion of both bare and H-saturated armchair SiC nanoribbons
cannot be reconciled with the quantum confinement effects,
since EG increases with increasing N. This is due to other
effects which overcome the quantum confinement effect. The
variation in band gaps of bare and hydrogen passivated arm-

TABLE III. Bonding types, Si-C distances d, lattice constants a, charge transfers �q, effective charges on Si and C, respectively, ZSi
� and

ZC
� , band gaps EG with GW0 corrections, and cohesive energies Ec for comparison of SiC polymorphs.

Structure Bonding
d

�Å�
a

�Å�
�q
�e�

ZSi
�

�e�
ZC

�

�e�
EG

�eV�
EG�+GW0�

�eV�
EC

�eV�

Linear chain sp 1.649 3.298 2.28 1.72 6.28 2.00 8.923

Wide zigzag chain sp 1.673 3.268 2.15 1.85 6.15 1.18 8.963

2D honeycomb sp2 1.786 3.094 2.53 1.47 6.53 2.53 3.90 11.940

Zincblende sp3 1.896 3.096 2.59 1.41 6.59 1.41 2.40 12.939

Wurtzite sp3 1.893 �3�, 1.907 �1� 3.091 2.63 1.37 6.63 2.36 3.32 12.933

FIG. 4. �Color online� Energy band structure of the bare �a� and
hydrogen saturated �b� armchair SiC nanoribbons, A-SiCNR�N�
having 9 Si-C pairs �N=9� in the unit cell and isosurfaces of charge
densities of selected states at the �-point of BZ. Zero of energy is
set at the Fermi level. Energy band gap is shaded.

FIRST-PRINCIPLES STUDY OF DEFECTS AND ADATOMS… PHYSICAL REVIEW B 81, 075433 �2010�

075433-5



chair SiC ribbons are presented in Fig. 5�c� and 5�d�. In Ref.
31, the variation of the band gap with N and resulting family
behavior is in agreement with present results. Whereas the
same variation is not presented in Ref. 31. The zigzag SiC-
NRs exhibit interesting magnetic properties and were inves-
tigated extensively by earlier works.31,36,37 For this reason,
the zigzag SiCNRs are examined in the present study.

VI. VACANCY DEFECTS AND ANTISITE

It has been shown that the vacancy defects have remark-
able effects on 2D graphene honeycomb structure and its
nanoribbons.38–43 Nonmagnetic graphene sheets or nanorib-
bons can attain spin polarized states due to vacancy defects.
We expect that similar effects of vacancy defects can occur
on the electronic and magnetic properties of SiC honeycomb
structure.

A. 2D Honeycomb SiC

The effects of Si and C vacancies, Si+C-divacancy and
C-Si-antisite are treated in periodically repeating supercells.
The size of supercell is optimized to allow negligible defect-
defect interaction between adjacent cells. Here the width of
the flat bands derived from the states of periodically repeat-
ing vacancies is taken as the measure of the strength of
vacancy-vacancy coupling. A �7�7� supercell is found to be
suitable, since it leads to rather flat defect bands. At the same
time it is not large and allows us to carry out numerical
calculations within feasible computational time. The flat
bands associated with vacancies can be considered as local-
ized defect state �if it is in the band gap� or resonance state

�if it is in the band continua�. Here we consider localized
defect states. Our results are presented in Fig. 6 for single C,
Si vacancies, Si+C divacancy, C+Si antisite defects.

A vacancy is generated first by removing a single atom, C
or Si atom from each supercell of the monolayer of SiC as
shown in Figs. 6�a� and 6�b�. Subsequently, the atomic struc-
ture is optimized. Single C vacancy in 2D monolayer of SiC
is nonmagnetic; Si atoms around vacancy with coordination
number 2 are displaced in the transversal direction and do
not induce any magnetic moment.

As for Si vacancy, three C atoms around vacancy re-
mained planar. Similar to the vacancies in graphene and BN,
Si-vacancy induces a local magnetization in the system. Is-
ovalue surfaces of the difference between spin-up and spin-
down charge densities i.e., 	�↑↓ clearly shows a spin polar-
ization around the vacancy and a net magnetic moment
constructed there from. The calculated total magnetic mo-
ment is 4�B per supercell. The Si vacancy in a repeating
�7�7� give rise to defect states in the band gap. As for Si
+C divacancy in Fig. 6�c�, it is again nonmagnetic since the
spins are paired; two C atoms around the vacancy choose to
make a bond with each other. The band gap is also modified.
Finally, we consider the antisite defect. The resulting relaxed
structure is given in Fig. 6�d�. Lattice is distorted as C-C
bond is shorter than Si-Si bond in the antisite case. It is noted
that the calculated magnetic moments for single Si and C
vacancy do not agree with Lieb’s theorem,44 which normally
predicts 1�B net magnetic moment both for Si and C vacan-
cies in Fig. 6. We attribute the discrepancy between the re-
sults of first principles calculations and Lieb’s theorem to the
structural relaxation occurred after the generation of vacancy
and significant charge transfer from Si to C. The localized
electronic states associated with the vacancy defects and an-
tisite are deduced from the band structure calculations as
presented in Table IV, where the energies are given from the
top of the valance band.
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FIG. 5. �Color online� Optimized atomic structures for �a� Bare
�b� H-passivated SiC nanoribbons. Large/blue and small/brown
balls represent Si and C atoms, respectively. The variations of band
gaps of �c� Bare and �d� H-passivated SiC nanoribbons with the
ribbon width N for 5�N�21.

(a) C Vacancy (b) Si Vacancy

(c) Si+C Vacancy (d) Antisite
µ = 0

µ = 0 µ = 0

µ = 4 µB

Vacancies and Antisite in 7x7 2D SiC

FIG. 6. �Color online� Optimized atomic structure and magnetic
moment of vacancy defects calculated in a �7�7� supercell of 2D
SiC structure. �a� C vacancy; �b� Si vacancy; �c� C+Si divacancy;
�d� C-Si antisite. In �b� the difference of spin-up and spin-down
charges are shown. Large/blue and small/brown balls indicate Si
and C atoms respectively.
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B. Vacancy defects in SiC Nanoribbons

The effects of the vacancy defects on the electronic and
magnetic properties are treated for of H-passivated
A-SiCNR�9� using a �4�1� repeating supercell. Our main
motivation was to investigate what differences would occur
in a ribbon. Optimized structures, calculated total magnetic
moments are presented in Fig. 7. Overall effects of vacancy,
divacancy and antisite effects are similar to those in 2D SiC
monolayer structure except in the antisite case the exchanged
Si atom moves out of the plane about 0.9 Å. One localized
state below the conduction band edge and one other state
above the valence band edge occur due to antisite as donor
and acceptor states, respectively.

VII. FUNCTIONALIZATION OF SIC HONEYCOMB
STRUCTURE BY ADATOMS

Specific adatoms can bind to 2D SiC monolayer with sig-
nificant binding energies. Adatom adsorption or decoration,

as well as substitution for Si or C atoms in the honeycomb
structure by foreign atoms can modify the properties of 2D
SiC monolayer and its nanoribbons. This way, SiC honey-
comb structures can be functionalized. Adatom adsorption
and substitution are considered within the periodically re-
peating �7�7� supercell geometry to minimize the interac-
tion between them. The calculations performed in a larger
supercell �10�10� have also showed similar results which is
an indication that the coupling between adjacent defects is
negligible.

A. Adatom adsorption

As for adatom adsorption, we considered Al, Co, Fe, N, P,
Ti by placing each of them on four different positions in the
�7�7� monolayer of SiC and then by fully relaxing the
whole system. The initial positions of the adsorption are on
top of silicon atom �TS�, on top of carbon atom �TC�, at the
center of hexagon �HS�, above the middle of the Si-C bond
�BS�. The distance between adatoms is 12 Å. Spin polarized
calculations are carried out to determine the binding struc-
ture and binding energy. Whether the adatoms are bound to
the surface are examined by calculating the binding energies
of these six different individual atoms in terms of the calcu-
lated total energies as EB=ET�SiC+adatom�−ET�SiC�bare��
−ET�adatom�. We found that all of these adatoms are bound
with a significant energy, which is larger than 1 eV. Flat
bands indicate that states induced by the adatoms are rather
localized and hence adatom-adatom interactions are negli-
gible. Therefore, adatoms treated here in supercell geometry
can represent single �isolated� adatom. Optimized adsorption
sites, total magnetic moments, heights from the SiC plane are
given in Table V.

B. Substitution of Si and C by foreign atoms

Here we examined the substitution of single Si or C atoms
in 2D SiC honeycomb structure by various foreign atoms.
Namely, B and N substituting C atom; Al, As, Ga, P substi-
tuting Si atom. Similar to adatom calculations, the substitu-
tion process is treated within periodically repeating �7�7�
supercell. Because of periodic boundary condition the local-
ized states appear as flat bands. We found that B, N, As, and

TABLE IV. Magnetic moments and positions of defect-induced state energies relative to the top of the
valance band. Spin-up�↑ � and spin-down�↓ � states are indicated. E �F� indicate whether the defect state is
empty �full-occupied�.

Si+C vacancy C-vacancy Si-vacancy Antisite

� 0 0 4�B 0

E1 �eV� 0.49 �F� 0.15 �F� 0.09 �F↑� 0.59 �F�
E2 1.40 �E� 1.82 �E� 0.11 �F↑� 2.12 �E�
E3 2.45 �E� 1.95 �E� 0.31 �F↓�
E4 0.33 �F↓�
E5 0.38 �E↓�
E6 1.47 �E↓�
E7 1.49 �E↓�

(a) C Vacancy (b) Si Vacancy

µ = 0 µ = 4 µB

(c) Si+C Divacancy (d) Antisite

µ = 0 µ = 0

Vacancy and Antisite in A-SiC NR (9)

FIG. 7. �Color online� Magnetic moment of vacancy defects
calculated in a �4�1� supercell of quasi 1D SiC armchair nanorib-
bon with N=9, i.e., A-SiCNR�9�. Dangling bonds at both edges are
saturated by hydrogen atoms. �a� C vacancy; �b� Si vacancy; �c�
Si+C divacancy; �d� C-Si antisite. In �b� the difference of spin-up
and spin-down charges are shown while others are nonmagnetic.
Large/blue and small/brown balls represent Si and C atoms
respectively.
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P atoms have a net magnetic moment �=1�B. Ga and Al do
not create any spin polarization. In Table VI, the substitu-
tional impurity states in the band gap of 2D SiC and resulting
net magnetic moments are given. The substitutional foreign
atoms, namely B, N, As, and P have either 3 or 5 valence
electrons and hence destroy the spin pairing in the perfect
honeycomb structure. The substitution of C and Si by these
atoms gives rise to a net magnetic moment of 1�B. As a
result, 2D SiC can be magnetized without doping by transi-
tion metal elements.

VIII. DISCUSSION AND CONCLUSIONS

We present a study on 1D SiC chains, 2D monolayer of
SiC in honeycomb structure and its armchair nanoribbons,
3D bulk SiC. We carried out stability analysis of those ma-
terials. Two-dimensional monolayer of SiC is an ionic com-
pound with charge transfer from silicon atoms to carbon at-
oms and has a hexagonal lattice forming a planar honeycomb
structure. The calculation of phonon modes results in all
positive frequencies in BZ and indicates the stability of the
planar honeycomb structure. This situation is in compliance
with the previous works,16,32 where the honeycomb struc-
tures of binary compounds of group IV elements or III-V
compounds are stable in planar geometry if they have an
element from the first row, such as B, C, N. The 2D SiC is a

nonmagnetic wide band gap semiconductor. However, it ac-
quires net magnetic moment when a single Si-vacancy defect
is created or Si and C atoms of the honeycomb structure are
substituted by As, P, B, and N. Single C-vacancy, Si+C di-
vacancy and Si-C antisite defects does not give rise to any
magnetic moment in the system. It is shown that 2D SiC can
be functionalized through Si-vacancy and adatom adsorption
or substitution of Si C by foreign atoms.

Armchair SiC nanoribbons are found to be nonmagnetic
semiconductors. We revealed the variation of band gap with
the width of both bare and H-passivated nanoribbons. The
variation of the band gap exhibits also family behavior.
However, the band gaps of armchair nanoribbons are smaller
than the band gap of 2D SiC for small N. Therefore the
confinement effect seen in narrow graphene armchair nano-
ribbons does not occur here.

In conclusion, our state-of-the-art first-principles calcula-
tions demonstrate that 2D SiC monolayer is stable in honey-
comb structure, and hence it has a strong chance to be syn-
thesized in future. Above results indicate that bare and
H-passivated SiC sheets and armchair nanoribbons can
present interesting properties which can be utilized in nano-
technology. Creating defects through vacancies, doping
through adatoms and substitutional impurities can function-
alize SiC honeycomb structure and hence add new magnetic
and electronic properties.

TABLE V. Binding energy EB, total magnetic moments �, optimized heights of adatoms from the 2D
monolayer of SiC h, and the energies of the localized states occurring in the band gap are given for each type
of adatom. Empty �E�, full �F�, spin-up and spin-down states are indicated. Energies of adatom induced
localized states are given relative to the top of the valence band.

Co Fe P Ti

Position HS HS BS TS

EB �eV� 2.099 1.928 1.758 2.605

� ��B� 1 2 1 2

h �Å� 1.392 1.465 1.743 1.355

E1 �eV� 0.13 �F↑� 0.30 �F↑� 0.17 �F↑� 0.43 �F↑�
E2 0.23 �F↑� 0.31 �F↑� 0.16 �F↑� 0.60 �F↓�
E3 0.33 �F↓� 0.82 �F↓� 0.20 �F↓� 1.62 �F↑�
E4 0.41 �F↓� 0.82 �F↓� 0.20 �F↑� 1.62 �F↑�
E5 0.67 �F↑� 1.17 �F↓� 0.31 �F↓� 1.99 �E↑�
E6 0.80 �F↓� 1.93 �E↑� 0.33 �E↓� 2.28 �E↑�
E7 1.26 �E↓� 2.20 �E↓� 2.40 �E↓�

TABLE VI. Energies of defects states occurring in the band gap are given for each type of substituted
atom. Empty �E�, full �F�, spin-up and spin-down states are indicated. Energies are measured from the top of
valence band.

B N As P

� ��B� 1 1 1 1

E1 �eV� 0.23 �F,↑� 1.47 �F,↑� 0.75 �F,↑� 1.18 �F,↑�
E2 0.69 �E,↓� 2.37 �E,↓� 1.18 �E,↓� 1.77 �E,↓�
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