Local convex directions
dc.citation.epage | 712 | en_US |
dc.citation.spage | 708 | en_US |
dc.contributor.author | Özgüler, Arif Bülent | en_US |
dc.contributor.author | Saadaoui, Karim | en_US |
dc.coverage.spatial | Porto, Portugal | en_US |
dc.date.accessioned | 2016-02-08T12:05:04Z | en_US |
dc.date.available | 2016-02-08T12:05:04Z | en_US |
dc.date.issued | 2001 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 4-7 September 2001 | en_US |
dc.description | Conference Name: European Control Conference, IEEE 2001 | en_US |
dc.description.abstract | A proof of a strengthened version of the phase growth condition for Hurwitz stable polynomials is given. Based on this result, a necessary and sufficient condition for a polynomial p(s) to be a local convex direction for a Hurwitz stable polynomial q(s) is obtained. The condition is in terms of polynomials associated with the even and odd parts of p(s) and q(s). | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T12:05:04Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2001 | en |
dc.identifier.doi | 10.23919/ECC.2001.7075993 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/27918 | en_US |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | https://doi.org/10.23919/ECC.2001.7075993 | en_US |
dc.source.title | Proceedings of the European Control Conference, IEEE 2001 | en_US |
dc.subject | Convex directions | en_US |
dc.subject | Hermite-Biehler theorem | en_US |
dc.subject | Local convex directions | en_US |
dc.subject | Robust control | en_US |
dc.subject | Stabilization | en_US |
dc.subject | Robust control | en_US |
dc.subject | Stabilization | en_US |
dc.subject | Phase growth | en_US |
dc.title | Local convex directions | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Local_convex_directions.pdf
- Size:
- 79.36 KB
- Format:
- Adobe Portable Document Format
- Description:
- View / Download