Markovian RNN: an adaptive time series prediction network with HMM-based switching for nonstationary environments

buir.contributor.authorİlhan, Fatih
buir.contributor.authorKaraahmetoğlu, Oğuzhan
buir.contributor.authorKozat, Süleyman Serdar
buir.contributor.orcidİlhan, Fatih|0000-0002-0173-7544
buir.contributor.orcidKaraahmetoğlu, Oğuzhan|0000-0002-0131-6782
buir.contributor.orcidKozat, Süleyman Serdar|0000-0002-6488-3848
dc.citation.epage728en_US
dc.citation.issueNumber2
dc.citation.spage715 en_US
dc.citation.volumeNumber34
dc.contributor.authorİlhan, Fatih
dc.contributor.authorKaraahmetoğlu, Oğuzhan
dc.contributor.authorBalaban, İ.
dc.contributor.authorKozat, Süleyman Serdar
dc.date.accessioned2022-03-04T09:09:04Z
dc.date.available2022-03-04T09:09:04Z
dc.date.issued2021-08-09
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractWe investigate nonlinear regression for nonstationary sequential data. In most real-life applications such as business domains including finance, retail, energy, and economy, time series data exhibit nonstationarity due to the temporally varying dynamics of the underlying system. We introduce a novel recurrent neural network (RNN) architecture, which adaptively switches between internal regimes in a Markovian way to model the nonstationary nature of the given data. Our model, Markovian RNN employs a hidden Markov model (HMM) for regime transitions, where each regime controls hidden state transitions of the recurrent cell independently. We jointly optimize the whole network in an end-to-end fashion. We demonstrate the significant performance gains compared to conventional methods such as Markov Switching ARIMA, RNN variants and recent statistical and deep learning-based methods through an extensive set of experiments with synthetic and real-life datasets. We also interpret the inferred parameters and regime belief values to analyze the underlying dynamics of the given sequences.en_US
dc.description.provenanceSubmitted by Dilan Ayverdi (dilan.ayverdi@bilkent.edu.tr) on 2022-03-04T09:09:04Z No. of bitstreams: 1 Markovian_RNN_an_adaptive_time_series_prediction_network_with_HMM-based_switching_for_nonstationary_environments.pdf: 3174275 bytes, checksum: a64e930b382230a5dfe1523c5cc0755d (MD5)en
dc.description.provenanceMade available in DSpace on 2022-03-04T09:09:04Z (GMT). No. of bitstreams: 1 Markovian_RNN_an_adaptive_time_series_prediction_network_with_HMM-based_switching_for_nonstationary_environments.pdf: 3174275 bytes, checksum: a64e930b382230a5dfe1523c5cc0755d (MD5) Previous issue date: 2021-08-09en
dc.identifier.doi10.1109/TNNLS.2021.3100528en_US
dc.identifier.eissn2162-2388
dc.identifier.issn2162-237X
dc.identifier.urihttp://hdl.handle.net/11693/77684
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttps://doi.org/10.1109/TNNLS.2021.3100528en_US
dc.source.titleIEEE Transactions on Neural Networks and Learning Systemsen_US
dc.subjectHidden Markov models (HMMs)en_US
dc.subjectNonlinear regressionen_US
dc.subjectNonstationarityen_US
dc.subjectRecurrent neural networks (RNNs)en_US
dc.subjectRegime switchingen_US
dc.subjectTime series predictionen_US
dc.titleMarkovian RNN: an adaptive time series prediction network with HMM-based switching for nonstationary environmentsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Markovian_RNN_An_adaptive_time_series_prediction_network_with_HMM-based_switching_for_nonstationary_environments.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format