On the convergence of a class of multilevel methods for large sparse Markov chains

Date

2007

Authors

Buchholz, P.
Dayar, T.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
23
downloads

Citation Stats

Series

Abstract

This paper investigates the theory behind the steady state analysis of large sparse Markov chains with a recently proposed class of multilevel methods using concepts from algebraic multigrid and iterative aggregation- disaggregation. The motivation is to better understand the convergence characteristics of the class of multilevel methods and to have a clearer formulation that will aid their implementation. In doing this, restriction (or aggregation) and prolongation (or disaggregation) operators of multigrid are used, and the Kronecker-based approach for hierarchical Markovian models is employed, since it suggests a natural and compact definition of grids (or levels). However, the formalism used to describe the class of multilevel methods for large sparse Markov chains has no influence on the theoretical results derived. © 2007 Society for Industrial and Applied Mathematics.

Source Title

SIAM Journal on Matrix Analysis and Applications

Publisher

Society for Industrial and Applied Mathematics

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English