Molten salt assisted self-assembly: synthesis of mesoporous LiCoO2 and LiMn2O4 thin films and investigation of electrocatalytic water oxidation performance of lithium cobaltate

buir.contributor.authorDağ, Ömer
dc.citation.epage1701913-11en_US
dc.citation.issueNumber1en_US
dc.citation.spage1701913en_US
dc.citation.volumeNumber14en_US
dc.contributor.authorSaat, G.en_US
dc.contributor.authorBalci, F. M.en_US
dc.contributor.authorAlsaç, E. P.en_US
dc.contributor.authorKaradas, F.en_US
dc.contributor.authorDağ, Ömeren_US
dc.date.accessioned2019-02-21T16:03:27Zen_US
dc.date.available2019-02-21T16:03:27Zen_US
dc.date.issued2018en_US
dc.departmentDepartment of Chemistryen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractMesoporous thin films of transition metal lithiates (TML) belong to an important group of materials for the advancement of electrochemical systems. This study demonstrates a simple one pot method to synthesize the first examples of mesoporous LiCoO2 and LiMn2O4 thin films. Molten salt assisted self-assembly can be used to establish an easy route to produce mesoporous TML thin films. The salts (LiNO3 and [Co(H2O)6](NO3)2 or [Mn(H2O)4](NO3)2) and two surfactants (10-lauryl ether and cethyltrimethylammonium bromide (CTAB) or cethyltrimethylammonium nitrate (CTAN)) form stable liquid crystalline mesophases. The charged surfactant is needed for the assembly of the necessary amount of salt in the hydrophilic domains of the mesophase, which produces stable metal lithiate pore-walls upon calcination. The films have a large pore size with a high surface area that can be increased up to 82 m2 g−1. The method described can be adopted to synthesize other metal oxides and metal lithiates. The mesoporous thin films of LiCoO2 show promising performance as water oxidation catalysts under pH 7 and 14 conditions. The electrodes, prepared using CTAN as the cosurfactant, display the lowest overpotentials in the literature among other LiCoO2 systems, as low as 376 mV at 10 mA cm-2 and 282 mV at 1 mA cm-2.en_US
dc.description.provenanceMade available in DSpace on 2019-02-21T16:03:27Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en_US
dc.description.sponsorshipThe authors thank the Scientific and Technological Research Council of Turkey (TÜBİTAK) under project number 113Z730 for financial support. Ö.D. is a member of Science Academy, Istanbul.en_US
dc.embargo.release2019-01-04en_US
dc.identifier.doi10.1002/smll.201701913en_US
dc.identifier.issn1613-6810 (print)en_US
dc.identifier.issn1613-6829 (online)en_US
dc.identifier.urihttp://hdl.handle.net/11693/50106en_US
dc.language.isoEnglishen_US
dc.publisherWiley-VCH Verlagen_US
dc.relation.isversionofhttps://doi.org/10.1002/smll.201701913en_US
dc.relation.project113Z730 - Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAK - Bilim Akademisien_US
dc.source.titleSmallen_US
dc.subjectElectrocatalysisen_US
dc.subjectMesoporous thin filmsen_US
dc.subjectMetal lithiatesen_US
dc.subjectMolten salt assisted self-assemblyen_US
dc.subjectWater oxidationen_US
dc.titleMolten salt assisted self-assembly: synthesis of mesoporous LiCoO2 and LiMn2O4 thin films and investigation of electrocatalytic water oxidation performance of lithium cobaltateen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Molten_salt_assisted_self_assembly_synthesis_of_mesoporous_LiCoO2_and_LiMn2O4_thin_films_and_investigation_of_electrocatalytic_water_oxidation_performance_of_lithium_cobaltate.pdf
Size:
5.12 MB
Format:
Adobe Portable Document Format
Description:
Full printable version