Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels

Date

2009

Authors

Arikan, E.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Information Theory

Print ISSN

0018-9448

Electronic ISSN

Publisher

IEEE

Volume

55

Issue

7

Pages

3051 - 3073

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
7
views
198
downloads

Series

Abstract

A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity I(W) of any given binary-input discrete memoryless channel (B-DMC) W. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is possible to synthesize, out of N independent copies of a given B-DMC W, a second set of N binary-input channels {WN (i): 1 ≤ i ≤ N} becomes large, the fraction of indices i for which I(WN (i) is near 1 approaches I(W) and the fraction for which I(WN (i) is near 0 approaches 1 - I(W). The polarized channels WN (i) are well-conditioned for channel coding: one need only send data at rate 1 through those with capacity near 1 and at rate 0 through the remaining. Codes constructed on the basis of this idea are called polar codes. The paper proves that, given any B-DMC W with I(W) and any target rate R < I(W), there exists a sequence of polar codes {Cn;n ≥ 1 such that Cn has block-length N = 2n, rate ≥ R, and probability of block error under successive cancellation decoding bounded as Pe (N, R) ≤ O(N-1/4 independently of the code rate. This performance is achievable by encoders and decoders with complexity O(N\log N) for each.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)