Canonical induction, Green functors, lefschetz invariant of monomial G-posets

Available
The embargo period has ended, and this item is now available.

Date

2019-06

Editor(s)

Advisor

Barker, Laurence John

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
3
views
51
downloads

Series

Abstract

Green functors are a kind of group functor, rather like Mackey functors, but with a further multiplicative structure. They are defined on a category whose objects are finite groups and whose morphisms are generated by maps such as induction, restriction, inflation, deflation. The aim of this thesis is general formulation for canonical induction, suitable for Green functors, optionally equipped with inflations. Let p be a prime number. In Section 3, we apply the Boltje’s theory of canonical induction [1] to p-permutation modules and give a restriction-preserving Z[1/p]- linear canonical induction formula from the inflations of projective modules. In Section 4, we give a general formulation of canonical induction theory for Green biset functors equipped with induction, restriction, inflation maps. Let G be a finite group and C be an abelian group. In Section 5, motivated in part by a search for connection with Peter Symonds’ proof [2] of the integrality of a canonical induction formula, we introduce a Lefschetz invariant for the Cmonomial Burnside ring. These invariants let us to construct generalize tensor induction functors associated to any C-monomial (G, H)-biset from the category of C-monomial G-posets to the category of C-monomial H-posets. We will show that these functors induce well-defined tensor induction maps from BC(G) to BC(H), which in turn gives a group homomorphism BC(G) × → BC(H) × between the unit groups of C-monomial Burnside rings.

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)