An overview of regression techniques for knowledge discovery
dc.citation.epage | 340 | en_US |
dc.citation.issueNumber | 4 | en_US |
dc.citation.spage | 319 | en_US |
dc.citation.volumeNumber | 14 | en_US |
dc.contributor.author | Uysal, İ. | en_US |
dc.contributor.author | Güvenir, H. A. | en_US |
dc.date.accessioned | 2018-04-12T13:45:47Z | |
dc.date.available | 2018-04-12T13:45:47Z | en_US |
dc.date.issued | 1999 | en_US |
dc.department | Department of Computer Engineering | en_US |
dc.description.abstract | Predicting or learning numeric features is called regression in the statistical literature, and it is the subject of research in both machine learning and statistics. This paper reviews the important techniques and algorithms for regression developed by both communities. Regression is important for many applications, since lots of real life problems can be modeled as regression problems. The review includes Locally Weighted Regression (LWR), rule-based regression, Projection Pursuit Regression (PPR), instance-based regression, Multivariate Adaptive Regression Splines (MARS) and recursive partitioning regression methods that induce regression trees (CART, RETIS and M5). | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T13:45:47Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 1999 | en_US |
dc.identifier.doi | 10.1017/S026988899900404X | en_US |
dc.identifier.eissn | 1469-8005 | en_US |
dc.identifier.issn | 0269-8889 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/38152 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1017/S026988899900404X | en_US |
dc.source.title | Knowledge Engineering Review | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Computational Complexity | en_US |
dc.subject | Database Systems | en_US |
dc.subject | Distance Measurement | en_US |
dc.subject | Functions | en_US |
dc.subject | Learning Systems | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Regression Analysis | en_US |
dc.subject | Robotics | en_US |
dc.subject | Instance-Based Regression | en_US |
dc.subject | Locally Weighted Regression (LWR) | en_US |
dc.subject | Projection Pursuit Regression (PPR) | en_US |
dc.subject | Knowledge Engineering | en_US |
dc.title | An overview of regression techniques for knowledge discovery | en_US |
dc.type | Review | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- An overview of regression techniques for knowledge discovery.pdf
- Size:
- 245.98 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version