Optimal joint modulation classification and symbol decoding
buir.contributor.author | Kazıklı, Ertan | |
buir.contributor.author | Dulek, Berkan | |
buir.contributor.author | Gezici, Sinan | |
dc.citation.epage | 2638 | en_US |
dc.citation.issueNumber | 5 | en_US |
dc.citation.spage | 2623 | en_US |
dc.citation.volumeNumber | 18 | en_US |
dc.contributor.author | Kazıklı, Ertan | en_US |
dc.contributor.author | Dulek, Berkan | en_US |
dc.contributor.author | Gezici, Sinan | en_US |
dc.date.accessioned | 2020-02-05T10:52:40Z | |
dc.date.available | 2020-02-05T10:52:40Z | |
dc.date.issued | 2019-05 | |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | In this paper, modulation classification and symbol decoding problems are jointly considered and optimal strategies are proposed under various settings. In the considered framework, there exist a number of candidate modulation formats and the aim is to decode a sequence of received signals with an unknown modulation scheme. To that aim, two different formulations are proposed. In the first formulation, the prior probabilities of the modulation schemes are assumed to be known and a formulation is proposed under the Bayesian framework. This formulation takes a constrained approach in which the objective function is related to symbol decoding performance whereas the constraint is related to modulation classification performance. The second formulation, on the other hand, addresses the case in which the prior probabilities of the modulation schemes are unknown, and provides a method under the minimax framework. In this case, a constrained approach is employed as well; however, the introduced performance metrics differ from those in the first formulation due to the absence of the prior probabilities of the modulation schemes. Finally, the performance of the proposed methods is illustrated through simulations. It is demonstrated that the proposed techniques improve the introduced symbol detection performance metrics via relaxing the constraint(s) on the modulation classification performance compared with the conventional techniques in a variety of system configurations. | en_US |
dc.description.provenance | Submitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2020-02-05T10:52:40Z No. of bitstreams: 1 Optimal_Joint_Modulation_Classification_and_Symbol_Decoding.pdf: 1828322 bytes, checksum: a2052483a4f5c0000675da93a85d81d6 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-02-05T10:52:40Z (GMT). No. of bitstreams: 1 Optimal_Joint_Modulation_Classification_and_Symbol_Decoding.pdf: 1828322 bytes, checksum: a2052483a4f5c0000675da93a85d81d6 (MD5) Previous issue date: 2019-05 | en |
dc.identifier.doi | 10.1109/TWC.2019.2906185 | en_US |
dc.identifier.eissn | 1558-2248 | |
dc.identifier.issn | 1536-1276 | |
dc.identifier.uri | http://hdl.handle.net/11693/53086 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | https://doi.org/ 10.1109/TWC.2019.2906185 | en_US |
dc.source.title | IEEE Transactions on Wireless Communications | en_US |
dc.subject | Modulation classification | en_US |
dc.subject | Demodulation | en_US |
dc.subject | Bayes | en_US |
dc.subject | Minimax | en_US |
dc.title | Optimal joint modulation classification and symbol decoding | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Optimal_Joint_Modulation_Classification_and_Symbol_Decoding.pdf
- Size:
- 1.75 MB
- Format:
- Adobe Portable Document Format
- Description: