Reducts of random hypergraphs
dc.citation.epage | 193 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 165 | en_US |
dc.citation.volumeNumber | 80 | en_US |
dc.contributor.author | Thomas, S. | en_US |
dc.date.accessioned | 2019-02-07T16:53:21Z | |
dc.date.available | 2019-02-07T16:53:21Z | |
dc.date.issued | 1996-08-05 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | For each k ⩾ 1, let Γk be the countable universal homogeneous k-hypergraph. In this paper, we shall classify the closed permutation groups G such that Aut(Γk) ⩽ G ⩽ Sym(Γk). In particular, we shall show that there exist only finitely many such groups G for each k ⩾ 1. We shall also show that each of the associated reducts of Γk is homogeneous with respect to a finite relational language. | en_US |
dc.identifier.doi | 10.1016/0168-0072(95)00061-5 | en_US |
dc.identifier.eissn | 1873-2461 | |
dc.identifier.issn | 0168-0072 | |
dc.identifier.uri | http://hdl.handle.net/11693/49063 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier BV | en_US |
dc.relation.isversionof | https://doi.org/10.1016/0168-0072(95)00061-5 | en_US |
dc.source.title | Annals of Pure and Applied Logic | en_US |
dc.title | Reducts of random hypergraphs | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Reducts_of_random_hypergraphs.pdf
- Size:
- 1.94 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: