Reducts of random hypergraphs

dc.citation.epage193en_US
dc.citation.issueNumber2en_US
dc.citation.spage165en_US
dc.citation.volumeNumber80en_US
dc.contributor.authorThomas, S.en_US
dc.date.accessioned2019-02-07T16:53:21Z
dc.date.available2019-02-07T16:53:21Z
dc.date.issued1996-08-05en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractFor each k ⩾ 1, let Γk be the countable universal homogeneous k-hypergraph. In this paper, we shall classify the closed permutation groups G such that Aut(Γk) ⩽ G ⩽ Sym(Γk). In particular, we shall show that there exist only finitely many such groups G for each k ⩾ 1. We shall also show that each of the associated reducts of Γk is homogeneous with respect to a finite relational language.en_US
dc.identifier.doi10.1016/0168-0072(95)00061-5en_US
dc.identifier.eissn1873-2461
dc.identifier.issn0168-0072
dc.identifier.urihttp://hdl.handle.net/11693/49063
dc.language.isoEnglishen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttps://doi.org/10.1016/0168-0072(95)00061-5en_US
dc.source.titleAnnals of Pure and Applied Logicen_US
dc.titleReducts of random hypergraphsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Reducts_of_random_hypergraphs.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: