Competitive location and pricing on a line with metric transportation costs
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Consider a three-level non-capacitated location/pricing problem: a firm first decides which facilities to open, out of a finite set of candidate sites, and sets service prices with the aim of revenue maximization; then a second firm makes the same decisions after checking competing offers; finally, customers make individual decisions trying to minimize costs that include both purchase and transportation. A restricted two-level problem can be defined to model an optimal reaction of the second firm to known decision of the first. For non-metric costs, the two-level problem corresponds to Envy-free Pricing or to a special Net- work Pricing problem, and is APX -complete even if facilities can be opened at no fixed cost. Our focus is on the metric 1-dimensional case, a model where customers are distributed on a main communica- tion road and transportation cost is proportional to distance. We describe polynomial-time algorithms that solve two- and three-level problems with opening costs and single 1 st level facility. Quite surpris- ingly, however, even the two-level problem with no opening costs becomes N P -hard when two 1 st level facilities are considered.