Maximum modulus points and zero sets of entire functions of regular growth
| dc.citation.epage | 484 | en_US |
| dc.citation.issueNumber | 8 | en_US |
| dc.citation.spage | 481 | en_US |
| dc.citation.volumeNumber | 341 | en_US |
| dc.contributor.author | Ostrovskii, I. | en_US |
| dc.contributor.author | Üreyen, E. | en_US |
| dc.date.accessioned | 2016-02-08T10:22:13Z | |
| dc.date.available | 2016-02-08T10:22:13Z | |
| dc.date.issued | 2005 | en_US |
| dc.department | Department of Mathematics | en_US |
| dc.description.abstract | We obtain lower asymptotic at ∞ estimates of the distance between a maximum modulus point and zero set of an entire function provided that the function is of regular growth with respect to a proximate order. The more regular the growth is the better the estimates are, and they are sharp in some sense. The case of infinite order is also considered; in this case a suitable analogue of usual proximate order is exploited. © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.crma.2005.09.012 | en_US |
| dc.identifier.issn | 1631-073X | |
| dc.identifier.uri | http://hdl.handle.net/11693/23975 | |
| dc.language.iso | English | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1016/j.crma.2005.09.012 | en_US |
| dc.source.title | Comptes Rendus Mathematique | en_US |
| dc.title | Maximum modulus points and zero sets of entire functions of regular growth | en_US |
| dc.title.alternative | Points de module maximal et ensemble de źeros des fonctions entières de croissance regulière | en_US |
| dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Maximum_modulus_points_and_zero_sets_of_entire_functions_of_regular_growth.pdf
- Size:
- 81.73 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version