Entering watch dogs*: evaluating privacy risks against large-scale facial search and data collection
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Discovering friends on online platforms have become relatively easier with the introduction of contact discovery and ability to search using phone numbers. Such features conveniently connect users by acting as unique tokens across platforms, as opposed to other attributes, such as user names. Using this feature, in this work, one of our contributions is to explore how an attacker can easily create a massive dataset of individuals residing in a given region (e.g., country) that includes high amount of personal information about such individuals. To identify the active social network accounts of individuals in a given region, we show that brute force phone number verification is possible in popular online services, such as WhatsApp, Facebook Messenger, and Twitter. We also go beyond and show the feasibility of collecting several data points on discovered accounts, including multiple facial data belonging to each account owner along with 23 other attributes. Then, as our main contribution, we quantify the privacy risk for an attacker linking a total stranger (e.g., someone it randomly comes across in public) to one of the collected records via facial features. Our results show that accurate facial search is possible in the constructed dataset and that an attacker can link a randomly taken photo (i.e., a single facial photo) of an individual to their profile with 67% accuracy. This means that an attacker can, on a large scale, create a search engine that is capable of identifying individuals' records efficiently and accurately from just a single facial photo.