Image histogram thresholding using Gaussian kernel density estimation (English)

Series

Abstract

In this article, image histogram thresholding is carried out using the likelihood of a mixture of Gaussians. In the proposed approach, a prob ability density function (PDF) of the histogram is computed using Gaussian kernel density estimation in an iterative manner. The threshold is found by iteratively computing a mixture of Gaussians for the two clusters. This process is aborted when the current bin is assigned to a different cluster than its predecessor. The method does not envolve an exhaustive search. Visual examples of our segmentation versus Otsu's thresholding method are presented. © 2013 IEEE.

Source Title

2013 21st Signal Processing and Communications Applications Conference (SIU)

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

Turkish