Fast shared-memory streaming multilevel graph partitioning

buir.contributor.authorAykanat, Cevdet
buir.contributor.orcidAykanat, Cevdet|0000-0002-4559-1321
dc.citation.epage151en_US
dc.citation.spage140en_US
dc.citation.volumeNumber147en_US
dc.contributor.authorJafari, N.
dc.contributor.authorSelvitopi, O.
dc.contributor.authorAykanat, Cevdet
dc.date.accessioned2022-02-28T11:02:35Z
dc.date.available2022-02-28T11:02:35Z
dc.date.issued2020-09-12
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractA fast parallel graph partitioner can benefit many applications by reducing data transfers. The online methods for partitioning graphs have to be fast and they often rely on simple one-pass streaming algorithms, while the offline methods for partitioning graphs contain more involved algorithms and the most successful methods in this category belong to the multilevel approaches. In this work, we assess the feasibility of using streaming graph partitioning algorithms within the multilevel framework. Our end goal is to come up with a fast parallel offline multilevel partitioner that can produce competitive cutsize quality. We rely on a simple but fast and flexible streaming algorithm throughout the entire multilevel framework. This streaming algorithm serves multiple purposes in the partitioning process: a clustering algorithm in the coarsening, an effective algorithm for the initial partitioning, and a fast refinement algorithm in the uncoarsening. Its simple nature also lends itself easily for parallelization. The experiments on various graphs show that our approach is on the average up to 5.1x faster than the multi-threaded MeTiS, which comes at the expense of only 2x worse cutsize.en_US
dc.description.provenanceSubmitted by Esma Aytürk (esma.babayigit@bilkent.edu.tr) on 2022-02-28T11:02:35Z No. of bitstreams: 1 Fast_shared-memory_streaming_multilevel_graph_partitioning.pdf: 1053565 bytes, checksum: f8543b54fb5f78aaa89b382e3c7bc907 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-02-28T11:02:35Z (GMT). No. of bitstreams: 1 Fast_shared-memory_streaming_multilevel_graph_partitioning.pdf: 1053565 bytes, checksum: f8543b54fb5f78aaa89b382e3c7bc907 (MD5) Previous issue date: 2020-09-12en
dc.embargo.release2022-08-12
dc.identifier.doi10.1016/j.jpdc.2020.09.004en_US
dc.identifier.eissn1096-0848en_US
dc.identifier.issn0743-7315en_US
dc.identifier.urihttp://hdl.handle.net/11693/77618en_US
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.jpdc.2020.09.004en_US
dc.source.titleJournal of Parallel and Distributed Computingen_US
dc.subjectStreaming algorithmsen_US
dc.subjectGraph partitioningen_US
dc.subjectMultilevel graph partitioningen_US
dc.subjectParallel graph partitioningen_US
dc.titleFast shared-memory streaming multilevel graph partitioningen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fast_shared-memory_streaming_multilevel_graph_partitioning.pdf
Size:
1 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: