Generalization of the Von Staudt-Clausen theorem

dc.citation.epage523en_US
dc.citation.issueNumber2en_US
dc.citation.spage519en_US
dc.citation.volumeNumber125en_US
dc.contributor.authorDibag, I.en_US
dc.date.accessioned2016-02-08T10:57:12Z
dc.date.available2016-02-08T10:57:12Z
dc.date.issued1989en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractThe localization LS(x) of log(1 + x) at a set of primes S is defined by taking those powers of x in the logarithmic series for log(1 + x) which lie in the span of S. The functional inverse LS-1(x) of LS(x) also localizes the functional inverse ex - 1 of log(1 + x) and a generalization of the Von Staudt-Clausen theorem is proved for the even coefficients in the power series expansion for x LS-1(x). This reduces to the Von Staudt-Clausen theorem when S is the set of all primes and to a weaker version of Theorem 3.9 of I. Dibag (J. Algebra87 (1984), 332-341) when S consists of a single prime. © 1989.en_US
dc.identifier.doi10.1016/0021-8693(89)90180-4en_US
dc.identifier.issn0021-8693
dc.identifier.urihttp://hdl.handle.net/11693/26254
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/0021-8693(89)90180-4en_US
dc.source.titleJournal of Algebraen_US
dc.titleGeneralization of the Von Staudt-Clausen theoremen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Generalization of the Von Staudt-Clausen theorem.pdf
Size:
188.71 KB
Format:
Adobe Portable Document Format
Description:
Full printable version