Generalization of the Von Staudt-Clausen theorem
dc.citation.epage | 523 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 519 | en_US |
dc.citation.volumeNumber | 125 | en_US |
dc.contributor.author | Dibag, I. | en_US |
dc.date.accessioned | 2016-02-08T10:57:12Z | |
dc.date.available | 2016-02-08T10:57:12Z | |
dc.date.issued | 1989 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | The localization LS(x) of log(1 + x) at a set of primes S is defined by taking those powers of x in the logarithmic series for log(1 + x) which lie in the span of S. The functional inverse LS-1(x) of LS(x) also localizes the functional inverse ex - 1 of log(1 + x) and a generalization of the Von Staudt-Clausen theorem is proved for the even coefficients in the power series expansion for x LS-1(x). This reduces to the Von Staudt-Clausen theorem when S is the set of all primes and to a weaker version of Theorem 3.9 of I. Dibag (J. Algebra87 (1984), 332-341) when S consists of a single prime. © 1989. | en_US |
dc.identifier.doi | 10.1016/0021-8693(89)90180-4 | en_US |
dc.identifier.issn | 0021-8693 | |
dc.identifier.uri | http://hdl.handle.net/11693/26254 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/0021-8693(89)90180-4 | en_US |
dc.source.title | Journal of Algebra | en_US |
dc.title | Generalization of the Von Staudt-Clausen theorem | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Generalization of the Von Staudt-Clausen theorem.pdf
- Size:
- 188.71 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version