Synthesis and characterization of metallopeptide nanostructures
buir.advisor | Güler, Mustafa Özgür | |
dc.contributor.author | Ustahüseyin, Oya | |
dc.date.accessioned | 2016-01-08T18:20:24Z | |
dc.date.available | 2016-01-08T18:20:24Z | |
dc.date.issued | 2013 | |
dc.description | Cataloged from PDF version of article. | en_US |
dc.description | Includes bibliographical references leaves 116-125. | en_US |
dc.description.abstract | Organic-inorganic hybrid structures play a number of distinguished roles in the living milieu. For instance, metal ions function as cofactors of enzymes and apatite mineralization in bone is driven by collagen nanofibers serve as both physical and chemical templates. These unique interactions in natural systems are examples for development of synthetic materials for many applications such as catalysts, artificial enzymes or materials for regenerative medicine etc. Manufacturing a catalyst at the nanoscale is important due to increased specific surface area and reduced diffusion path length. In this thesis, we demonstrated peptide based bioinspired nanomaterials. The self-assembled peptide nanofibers were utilized as templates for palladium nanoparticle formation. Functionalization of insoluble electrospun nanofibers with a heavy metal binding peptide sequence was utilized to remove toxic metal ions from water. In addition, peptide amphiphile nanofibers complexed with ZnII were used as enzyme mimics. The resulting nanostructures resemble natural bone alkaline phosphatase activity, which is a major enzyme for natural bone apatite formation. | en_US |
dc.description.provenance | Made available in DSpace on 2016-01-08T18:20:24Z (GMT). No. of bitstreams: 1 0006275.pdf: 7740648 bytes, checksum: 14083b779119b93f89211e32814721fa (MD5) | en |
dc.description.statementofresponsibility | Ustahüseyin, Oya | en_US |
dc.format.extent | xxiii, 215 leaves, graphics, illustrations | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/15545 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Peptide amphiphile | en_US |
dc.subject | self-assembly | en_US |
dc.subject | nanofibers | en_US |
dc.subject | palladium catalysis | en_US |
dc.subject | water cleaning | en_US |
dc.subject | apatite formation | en_US |
dc.subject | artificial metalloenzyme | en_US |
dc.subject.lcc | QP552.P4 U78 2013 | en_US |
dc.subject.lcsh | Peptides--Synthesis. | en_US |
dc.subject.lcsh | Nanostructures. | en_US |
dc.subject.lcsh | Solid-phase synthesis. | en_US |
dc.subject.lcsh | Nanostructured materials. | en_US |
dc.title | Synthesis and characterization of metallopeptide nanostructures | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Materials Science and Nanotechnology | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1