Many-body interaction effects in quasi-one-dimensional photo-excited electron-hole systems

Date

1999

Editor(s)

Advisor

Tanatar, Bilal

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
2
views
16
downloads

Series

Abstract

The work in this thesis concerns rnany-body interaction effects in a quasi-onedimensional electron-hole plasma, which may be generated under intense photoexcitation in a semiconductor quantum-well wire. In particular, we investigate how these interactions affect the optical properties of the semiconductor quantum wire. We address this question in two parts: First, the band-gap renormalization (BGR) induced by self-energy corrections of electrons and holes is studied. A two subband model arising from the confinement of the quantum wire is developed to include the multisubband effects. The many-body theoretical formalism of electron (hole) self-energy is given within the GW approximation. We use the dielectric function both in full dynamical random-phase approximation, and in cjuasi-static approximation, in order to emphasize the dynamical properties of screening. The dependence of BGR on the e — h plasma density, temperature and wire width is studied. In the second part, the exciton renormalization induced by e — h plasma screening, and Goulomb correlation effects on the optical spectra of a quantum wire are considered. The optical properties are directly associated with the e — h two particle propogator, which obeys the Bethe-Salpeter equation. Based on recent studies, we review the solution of this equation with screened Coulomb interaction. In particular it is shown* that the dynamical treatment of screening produces an optical absorption/luminescence spectra which is consistent with experimental results. We present a discussion on the interplay of excitons and unbound carriers and on the reflection of this interplay to the optical spectra.

Course

Other identifiers

Book Title

Degree Discipline

Physics

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)