An algorithmic proof of the polyhedral decomposition theorem
dc.citation.epage | 472 | en_US |
dc.citation.spage | 463 | en_US |
dc.citation.volumeNumber | 35 | en_US |
dc.contributor.author | Akgül, M. | en_US |
dc.date.accessioned | 2019-02-19T11:33:28Z | |
dc.date.available | 2019-02-19T11:33:28Z | |
dc.date.issued | 1988 | en_US |
dc.department | Department of Industrial Engineering | en_US |
dc.description.abstract | It is well‐known that any point in a convex polyhedron P can be written as the sum of a convex combination of extreme points of P and a non‐negative linear combination of extreme rays of P. Grötschel, Lovász, and Schrijver gave a polynomial algorithm based on the ellipsoidal method to find such a representation for any x in P when P is bounded. Here we show that their algorithm can be modified and implemented in polynomial time using the projection method or a simplex‐type algorithm : in n(2n + 1) simplex pivots, where n is the dimension of x. Extension to the unbounded case is immediate. | en_US |
dc.description.provenance | Submitted by Merve Nalbant (merve.nalbant@bilkent.edu.tr) on 2019-02-19T11:33:28Z No. of bitstreams: 1 An_algorithmic_proof_of_the_polyhedral_decomposition_theorem.pdf: 515715 bytes, checksum: f346c594466f2c89703799920fab3fba (MD5) | en |
dc.description.provenance | Made available in DSpace on 2019-02-19T11:33:28Z (GMT). No. of bitstreams: 1 An_algorithmic_proof_of_the_polyhedral_decomposition_theorem.pdf: 515715 bytes, checksum: f346c594466f2c89703799920fab3fba (MD5) Previous issue date: 1988 | en |
dc.identifier.issn | 0894-069X (print) | |
dc.identifier.issn | 1520-6750 (online) | |
dc.identifier.uri | http://hdl.handle.net/11693/49599 | |
dc.language.iso | English | en_US |
dc.publisher | John Wiley & Sons | en_US |
dc.source.title | Naval Research Logistics | en_US |
dc.title | An algorithmic proof of the polyhedral decomposition theorem | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- An_algorithmic_proof_of_the_polyhedral_decomposition_theorem.pdf
- Size:
- 503.63 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: