Does the donor-acceptor concept work for designing synthetic metals? 2. theoretical investigation of copolymers of 4-(dicyanomethylene)-4H-cyclopenta[2, 1-b: 3, 4-b′]dithiophene and 3, 4-(ethylenedioxy)thiophene

Date
2002
Authors
Salzner, U.
Köse, M. E.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Journal of Physical Chemistry B
Print ISSN
1089-5647
Electronic ISSN
Publisher
American Chemical Society
Volume
106
Issue
36
Pages
9221 - 9226
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Density functional theory (DFT) calculations were performed on oligomers of 3,4-(ethylenedioxy)thiophene (EDOT), 4-(dicyanomethylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene (CDM), and co-oligomers (CDM/ EDOT). Oligomer data were extrapolated to polymer values. Theoretical band gaps reproduce λmax from UV spectroscopy for PEDOT and are about 1 eV larger than electrochemical band gaps. λmax of PCDM/EDOT is predicted to be 0.42 eV smaller than that of PEDOT and 0.15 eV smaller than that of PCDM. PCDM/EDOT has a wide valence and an extremely narrow conduction "band". It is probably better not to refer to these localized states as a band at all. This rationalizes the mobility ratio of 500 between p-type and n-type charge carriers and the low n-type conductivity of PCDM/EDOT. The lack of dispersion of the conduction band is due to the very different EAs of EDOT and CDM.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)