Hardy's generalization of eᶻ and related analogs of cosine and sine
dc.citation.epage | 14 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 1 | en_US |
dc.citation.volumeNumber | 6 | en_US |
dc.contributor.author | Ostrovskii, I. | en_US |
dc.date.accessioned | 2019-01-31T06:51:44Z | |
dc.date.available | 2019-01-31T06:51:44Z | |
dc.date.issued | 2006 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | In 1904, Hardy introduced an entire function depending on two parameters being a generalization of e z. He had studied in detail its asymptotic properties and that of its zeros. We consider the two following non-asymptotic problems related to the zeros. (i) Determine values of the parameters such that all the zeros belong to the open left half-plane. For these values, the analogs of sine and cosine generated by Hardy’s function have real, simple and interlacing zeros. (ii) Determine the number of real zeros as a function of the parameters. | en_US |
dc.identifier.eissn | 2195-3724 | |
dc.identifier.issn | 1617-9447 | |
dc.identifier.uri | http://hdl.handle.net/11693/48572 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.source.title | Computational Methods and Function Theory | en_US |
dc.subject | Class P | en_US |
dc.subject | Integral representation | en_US |
dc.subject | Levin's generalization of the Hermite - Biehler theorem | en_US |
dc.subject | Logarithmic derivative | en_US |
dc.subject | Rolle's theorem | en_US |
dc.title | Hardy's generalization of eᶻ and related analogs of cosine and sine | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Hardy_s_Generalization_of_e_z_and_Related_Analogs_of_Cosine_and_Sine.pdf
- Size:
- 182.17 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: