Hardy's generalization of eᶻ and related analogs of cosine and sine

dc.citation.epage14en_US
dc.citation.issueNumber1en_US
dc.citation.spage1en_US
dc.citation.volumeNumber6en_US
dc.contributor.authorOstrovskii, I.en_US
dc.date.accessioned2019-01-31T06:51:44Z
dc.date.available2019-01-31T06:51:44Z
dc.date.issued2006en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractIn 1904, Hardy introduced an entire function depending on two parameters being a generalization of e z. He had studied in detail its asymptotic properties and that of its zeros. We consider the two following non-asymptotic problems related to the zeros. (i) Determine values of the parameters such that all the zeros belong to the open left half-plane. For these values, the analogs of sine and cosine generated by Hardy’s function have real, simple and interlacing zeros. (ii) Determine the number of real zeros as a function of the parameters.en_US
dc.identifier.eissn2195-3724
dc.identifier.issn1617-9447
dc.identifier.urihttp://hdl.handle.net/11693/48572
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.source.titleComputational Methods and Function Theoryen_US
dc.subjectClass Pen_US
dc.subjectIntegral representationen_US
dc.subjectLevin's generalization of the Hermite - Biehler theoremen_US
dc.subjectLogarithmic derivativeen_US
dc.subjectRolle's theoremen_US
dc.titleHardy's generalization of eᶻ and related analogs of cosine and sineen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hardy_s_Generalization_of_e_z_and_Related_Analogs_of_Cosine_and_Sine.pdf
Size:
182.17 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: