Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
We report a theoretical and experimental demonstration of enhanced microwave transmission through subwavelength apertures in metallic structures with double-sided gratings. Three different types of aluminum gratings (sinusoidal, symmetric rectangular, and asymmetric rectangular shaped) are designed and analyzed. Our samples have a periodicity of 16 mm, and a slit width of 2 mm. Transmission measurements are taken in the 10–37.5 GHz frequency spectrum, which corresponds to 8–30 mm wavelength region. All three structures display significantly enhanced transmission around surface plasmon resonance frequencies. The experimental results agree well with finite-difference-time-domain based theoretical simulations. Asymmetric rectangular grating structure exhibits the best results with ,50% transmission at 20.7 mm, enhancement factor of ,25, and ±4° angular divergence.