Characterization and imaging with lamb wave lens at gigahertz frequencies
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Lamb wave lenses with conical refracting surfaces are fabricated for use at 400 MHz and 1 GHz. The conical surfaces are ground and polished with mechanical means and they are sufficiently smooth for the frequencies of interest. The wide bandwidth of transducers allow frequency tuning necessary for Lamb wave lenses. The fabricated lenses show the expected V(Z) performance. At high frequencies the attenuation in the coupling medium can be very high, but due to the smaller wavelength the resolution is better and defocus distance can be reduced. Inherently higher leaky wave sensitivity of Lamb wave lens enables a good V(Z) characterization ability at higher frequencies as compared to the conventional spherical lens. Subsurface imaging with these Lamb wave lenses gives satisfactory results for layered structures. Chosen object has leaky wave modes within the angular coverage of the lens. The images exhibit a resolution close to the diffraction limit. Experimental V(Z) curves obtained with these lenses along with images are presented.