On Rogers-Ramanujan functions, binary quadratic froms and eta-quotients
dc.citation.epage | 793 | en_US |
dc.citation.issueNumber | 3 | en_US |
dc.citation.spage | 777 | en_US |
dc.citation.volumeNumber | 142 | en_US |
dc.contributor.author | Berkovich, A. | en_US |
dc.contributor.author | Yeşilyurt, H. | en_US |
dc.date.accessioned | 2015-07-28T12:04:45Z | |
dc.date.available | 2015-07-28T12:04:45Z | |
dc.date.issued | 2014 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | In a handwritten manuscript published with his lost notebook, Ramanujan stated without proofs forty identities for the Rogers-Ramanujan functions. We observe that the function that appears in Ramanujan's identities can be obtained from a Hecke action on a certain family of eta products. We establish further Hecke-type relations for these functions involving binary quadratic forms. Our observations enable us to find new identities for the Rogers-Ramanujan functions and also to use such identities in return to find identities involving binary quadratic forms. © 2013 American Mathematical Society. | en_US |
dc.description.provenance | Made available in DSpace on 2015-07-28T12:04:45Z (GMT). No. of bitstreams: 1 6377.pdf: 155943 bytes, checksum: 59dd0d16fcac7d29c4dc9b44a720fcda (MD5) | en |
dc.identifier.doi | 10.1090/S0002-9939-2013-11816-2 | en_US |
dc.identifier.eissn | 1088-6834 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.uri | http://hdl.handle.net/11693/13147 | |
dc.language.iso | English | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1090/S0002-9939-2013-11816-2 | en_US |
dc.source.title | Proceedings of the American Mathematical Society | en_US |
dc.subject | Binary Quadratic Forms | en_US |
dc.subject | Eta-quotients | en_US |
dc.subject | Ramanujan's Lost Notebook | en_US |
dc.subject | Rogers-ramanujan Functions | en_US |
dc.subject | Thompson Series | en_US |
dc.title | On Rogers-Ramanujan functions, binary quadratic froms and eta-quotients | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 6377.pdf
- Size:
- 152.29 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version