Exact solution methodologies for the p-center problem under single and multiple allocation strategies
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Series
Abstract
The p-center problem is a relatively well known facility location problem that involves locating p identical facilities on a network to minimize the maximum distance between demand nodes and their closest facilities. The focus of the problem is on the minimization of the worst case service time. This sort of objective is more meaningful than total cost objectives for problems with a time sensitive service structure. A majority of applications arises in emergency service locations such as determining optimal locations of ambulances, fire stations and police stations where the human life is at stake. There is also an increased interest in p-center location and related location covering problems in the contexts of terror fighting, natural disasters and human-caused disasters. The p-center problem is NP-hard even if the network is planar with unit vertex weights, unit edge lengths and with the maximum vertex degree of 3. If the locations of the facilities are restricted to the vertices of the network, the problem is called the vertex restricted p-center problem; if the facilities can be placed anywhere on the network, it is called the absolute p-center problem. The p-center problem with capacity restrictions on the facilities is referred to as the capacitated p-center problem and in this problem, the demand nodes can be assigned to facilities with single or multiple allocation strategies. In this thesis, the capacitated p-center problem under the multiple allocation strategy is studied for the first time in the literature. The main focus of this thesis is a modelling and algorithmic perspective in the exact solution of absolute, vertex restricted and capacitated p-center problems. The existing literature is enhanced by the development of mathematical formulations that can solve typical dimensions through the use of off the-shelf commercial solvers. By using the structural properties of the proposed formulations, exact algorithms are developed. In order to increase the efficiency of the proposed formulations and algorithms in solving higher dimensional problems, new lower and upper bounds are provided and these bounds are utilized during the experimental studies. The dimensions of problems solved in this thesis are the highest reported in the literature.