Deep learning-based QoE prediction for streaming services in mobile networks

buir.contributor.authorGökcesu, Hakan
dc.citation.epage6en_US
dc.citation.spage1en_US
dc.contributor.authorHuang, Gan
dc.contributor.authorErçetin, Özgür
dc.contributor.authorGökcesu, Hakan
dc.contributor.authorKalem, Gökhan
dc.coverage.spatialThessaloniki, Greeceen_US
dc.date.accessioned2023-02-17T06:24:20Z
dc.date.available2023-02-17T06:24:20Z
dc.date.issued2022-11-15
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionConference Name: 2022 18th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)en_US
dc.descriptionDate of Conference: 10-12 October 2022en_US
dc.description.abstractVideo streaming accounts for the most of the global Internet traffic and providing a high user Quality of Experience (QoE) is considered an essential target for mobile network operators (MNOs). QoE strongly depends on network Quality of Service (QoS) parameters. In this work, we use real-world network traces obtained from a major cellular operator in Turkey to establish a mapping from network side parameters to the user QoE. To this end, we use a model-aided deep learning method for first predicting channel path loss, and then, employ this prediction for predicting video streaming MOS. The experimental results demonstrate that the proposed model-aided deep learning model can guarantee higher prediction accuracy compared to predictions only relying on mathematical models. We also demonstrate that even though a trained model cannot be directly transferred from one geographical area to another, they significantly reduce the volume of required training when used for prediction in a new area.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2023-02-17T06:24:20Z No. of bitstreams: 1 Deep_Learning-Based_QoE_Prediction_for_Streaming_Services_in_Mobile_Networks.pdf: 1595930 bytes, checksum: 246cc55eb2ee4abc6a5948888b86ea79 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-17T06:24:20Z (GMT). No. of bitstreams: 1 Deep_Learning-Based_QoE_Prediction_for_Streaming_Services_in_Mobile_Networks.pdf: 1595930 bytes, checksum: 246cc55eb2ee4abc6a5948888b86ea79 (MD5) Previous issue date: 2022-11-15en
dc.identifier.doi10.1109/WiMob55322.2022.9941672en_US
dc.identifier.eisbn2160-4894
dc.identifier.eisbn978-1-6654-6975-3
dc.identifier.eissn2160-4894
dc.identifier.urihttp://hdl.handle.net/11693/111471
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://www.doi.org/10.1109/WiMob55322.2022.9941672en_US
dc.source.titleInternational Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)en_US
dc.subjectQuality of experienceen_US
dc.subjectPredictionen_US
dc.subjectDeep learningen_US
dc.subjectVideo streamingen_US
dc.subjectMobile networksen_US
dc.subjectKey performance indicatorsen_US
dc.titleDeep learning-based QoE prediction for streaming services in mobile networksen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep_Learning-Based_QoE_Prediction_for_Streaming_Services_in_Mobile_Networks.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: