Environmental friendly InP/ZnS nanocrystals
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Semiconductor nanocrystals are nanometer scale fluorescent crystallites with tunable optical properties, which can be controlled by the material composition and particle size. They can be prepared using various synthesis techniques and find applications in many different areas ranging from life sciences to electronics. In this thesis, indium phosphide based nanocrystals are studied for LED applications. The thesis research work focuses on the colloidal synthesis method and material characterization of these nanocrystals. Using one pot synthesis method, the indium phosphide/zinc sulfide (InP/ZnS) core/shell nanocrystal structures are synthesized. This synthesis technique allows for a reproducible and tunable preparation method. The material characterization techniques used in this thesis include UV-Vis spectroscopy, photoluminescence spectroscopy, transmission electron microscopy (TEM), X-ray diffraction, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-mass spectrometry (ICP-MS), and Zeta Sizer (or DLS). These properties make InP/ZnS nanocrystals comparable to their cadmium (Cd) containing counterparts with respect to their optical properties, and InP/ZnS nanocrystals offer the potential to replace them because of environmental concerns in LED applications.