Rigorous solutions of electromagnetic problems involving hundreds of millions of unknowns
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Accurate simulations of real-life electromagnetic problems with integral equations require the solution of dense matrix equations involving millions of unknowns. Solutions of these extremely large problems cannot be easily achieved, even when using the most powerul computers with state-of-the-art technology. Hence, many electromagnetic problems in the literature have been solved by resoring to various approximation techniques, without controllable error. In this paper, we present full-wave solutions of scattering problems discretized with hundreds of millions of unknowns by employing a parallel implementation of the Multilevel Fast Multipole Algorithm. Various examples involving canonical and complicated objects, including scatterers larger than 1000λ, are presented, in order to demonstrate the feasibility of accurately solving large-scale problems on relatively inexpensive computing platforms.