A new generalization of delayed feedback control

dc.citation.epage377en_US
dc.citation.issueNumber1en_US
dc.citation.spage365en_US
dc.citation.volumeNumber19en_US
dc.contributor.authorMorgül, Ö.en_US
dc.date.accessioned2016-02-08T10:05:53Z
dc.date.available2016-02-08T10:05:53Z
dc.date.issued2009en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractIn this paper, we consider the stabilization problem of unstable periodic orbits of one-dimensional discrete time chaotic systems. We propose a novel generalization of the classical delayed feedback law and present some stability results. These results show that for period 1 all hyperbolic periodic orbits can be stabilized by the proposed method; for higher order periods the proposed scheme possesses some inherent limitations. However, some more improvement over the classical delayed feedback scheme can be achieved with the proposed scheme. The stability proofs also give the possible feedback gains which achieve stabilization. We will also present some simulation results.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:05:53Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009en
dc.identifier.doi10.1142/S0218127409022920en_US
dc.identifier.eissn1793-6551
dc.identifier.issn0218-1274
dc.identifier.urihttp://hdl.handle.net/11693/22871
dc.language.isoEnglishen_US
dc.publisherWorld Scientific Publishing Co. Pte. Ltd.en_US
dc.relation.isversionofhttp://doi.org/10.1142/S0218127409022920en_US
dc.source.titleInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineeringen_US
dc.subjectChaotic systemsen_US
dc.subjectChaos controlen_US
dc.subjectDelayed feedbacken_US
dc.subjectPyragas controlleren_US
dc.titleA new generalization of delayed feedback controlen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_new_generalization_of_delayed_feedback_control.pdf
Size:
249.92 KB
Format:
Adobe Portable Document Format
Description:
Full printable version